skip to main content

Search for: All records

Creators/Authors contains: "Kozloff, Kenneth M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)

    Sclerostin antibody (SclAb) therapy has been suggested as a novel therapeutic approach toward addressing the fragility phenotypic of osteogenesis imperfecta (OI). Observations of cellular and transcriptional responses to SclAb in OI have been limited to mouse models of the disorder, leaving a paucity of data on the human OI osteoblastic cellular response to the treatment. Here, we explore factors associated with response to SclAb therapy in vitro and in a novel xenograft model using OI bone tissue derived from pediatric patients. Bone isolates (approximately 2 mm3) from OI patients (OI type III, type III/IV, and type IV,n= 7; non‐OI control,n= 5) were collected to media, randomly assigned to an untreated (UN), low‐dose SclAb (TRL, 2.5 μg/mL), or high‐dose SclAb (TRH, 25 μg/mL) group, and maintained in vitro at 37°C. Treatment occurred on days 2 and 4 and was removed on day 5 for TaqMan qPCR analysis of genes related to theWntpathway. A subset of bone was implanted s.c. into an athymic mouse, representing our xenograft model, and treated (25 mg/kg s.c. 2×/week for 2/4 weeks). Implanted OI bone was evaluated using μCT and histomorphometry. Expression ofWnt/Wnt‐related targets varied among untreated OI bone isolates. When treated with SclAb, OI bone showed an upregulation in osteoblast and osteoblast progenitor markers, which was heterogeneous across tissue. Interestingly, the greatest magnitude of response generally corresponded to samples with low untreated expression of progenitor markers. Conversely, samples with high untreated expression of these markers showed a lower response to treatment. in vivo implanted OI bone showed a bone‐forming response to SclAb via μCT, which was corroborated by histomorphometry. SclAb induced downstreamWnttargetsWISP1andTWIST1, and elicited a compensatory response inWntinhibitorsSOSTandDKK1in OI bone with the greatest magnitude from OI cortical bone. Understanding patients' genetic, cellular, and morphological bone phenotypes may play an important role in predicting treatment response. This information may aid in clinical decision‐making for pharmacological interventions designed to address fragility in OI. © 2020 The Authors.JBMR Pluspublished by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

    more » « less