- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
00000050000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Kramer, Matthew J. (5)
-
Zhou, Lin (4)
-
Ma, Tao (3)
-
Ho, Kai-Ming (2)
-
Wang, Cai-Zhuang (2)
-
Al Hasan, Naila (1)
-
Bellaiche, Laurent (1)
-
Besser, Matthew F. (1)
-
Bud'ko, Sergey L. (1)
-
Canfield, Paul C. (1)
-
Chen, Minda (1)
-
Cissé, Cheikh (1)
-
Cui, Jun (1)
-
Da, Bo (1)
-
Deng, Yuhang (1)
-
Fan, Zhongming (1)
-
Hou, Huilong (1)
-
Huang, Wenyu (1)
-
Hwang, Yunho (1)
-
Jia, Shuang (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ma, Tao ; Fan, Zhongming ; Xu, Bin ; Kim, Tae-Hoon ; Lu, Ping ; Bellaiche, Laurent ; Kramer, Matthew J. ; Tan, Xiaoli ; Zhou, Lin ( , Physical Review Letters)
-
Ma, Tao ; Wang, Shuai ; Chen, Minda ; Maligal-Ganesh, Raghu V. ; Wang, Lin-Lin ; Johnson, Duane D. ; Kramer, Matthew J. ; Huang, Wenyu ; Zhou, Lin ( , Chem)
-
Hou, Huilong ; Simsek, Emrah ; Ma, Tao ; Johnson, Nathan S. ; Qian, Suxin ; Cissé, Cheikh ; Stasak, Drew ; Al Hasan, Naila ; Zhou, Lin ; Hwang, Yunho ; et al ( , Science)
Elastocaloric cooling, a solid-state cooling technology, exploits the latent heat released and absorbed by stress-induced phase transformations. Hysteresis associated with transformation, however, is detrimental to efficient energy conversion and functional durability. We have created thermodynamically efficient, low-hysteresis elastocaloric cooling materials by means of additive manufacturing of nickel-titanium. The use of a localized molten environment and near-eutectic mixing of elemental powders has led to the formation of nanocomposite microstructures composed of a nickel-rich intermetallic compound interspersed among a binary alloy matrix. The microstructure allowed extremely small hysteresis in quasi-linear stress-strain behaviors—enhancing the materials efficiency by a factor of four to seven—and repeatable elastocaloric performance over 1 million cycles. Implementing additive manufacturing to elastocaloric cooling materials enables distinct microstructure control of high-performance metallic refrigerants with long fatigue life.
-
Kaluarachchi, Udhara S. ; Deng, Yuhang ; Besser, Matthew F. ; Sun, Kewei ; Zhou, Lin ; Nguyen, Manh Cuong ; Yuan, Zhujun ; Zhang, Chenglong ; Schilling, James S. ; Kramer, Matthew J. ; et al ( , Physical Review B)