skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Krasnoselskikh, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.Whistler waves are electromagnetic waves produced by electron-driven instabilities, which in turn can reshape the electron distributions via wave–particle interactions. In the solar wind they are one of the main candidates for explaining the scattering of the strahl electron population into the halo at increasing radial distances from the Sun and for subsequently regulating the solar wind heat flux. However, it is unclear what type of instability dominates to drive whistler waves in the solar wind. Aims.Our goal is to study whistler wave parameters in the young solar wind sampled by Parker Solar Probe (PSP). The wave normal angle (WNA) in particular is a key parameter to discriminate between the generation mechanisms of these waves. Methods.We analyzed the cross-spectral matrices of magnetic field fluctuations measured by the search-coil magnetometer (SCM) and processed by the Digital Fields Board (DFB) from the FIELDS suite during PSP’s first perihelion. Results.Among the 2701 wave packets detected in the cross-spectra, namely individual bins in time and frequency, most were quasi-parallel to the background magnetic field; however, a significant part (3%) of the observed waves had oblique (> 45°) WNA. The validation analysis conducted with the time series waveforms reveal that this percentage is a lower limit. Moreover, we find that about 64% of the whistler waves detected in the spectra are associated with at least one magnetic dip. Conclusions.We conclude that magnetic dips provide favorable conditions for the generation of whistler waves. We hypothesize that the whistlers detected in magnetic dips are locally generated by the thermal anisotropy as quasi-parallel and can gain obliqueness during their propagation. We finally discuss the implications of our results for the scattering of the strahl in the solar wind. 
    more » « less
  2. Abstract Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called “plasma emission” framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f pe and/or its harmonic 2 f pe . However, the details of the physics of mode conversion are unclear, and so far the magnetic component of the plasma waves has not been definitively measured. Several spacecraft have measured quasi-monochromatic Langmuir or slow extraordinary modes (sometimes called z -modes) in the solar wind. These coherent waves are expected to have a weak magnetic component, which has never been observed in an unambiguous way. Here we report on the direct measurement of the magnetic signature of these waves using the Search Coil Magnetometer sensor of the Parker Solar Probe/FIELDS instrument. Using simulations of wave propagation in an inhomogeneous plasma, we show that the appearance of the magnetic component of the slow extraordinary mode is highly influenced by the presence of density inhomogeneities that occasionally cause the refractive index to drop to low values where the wave has strong electromagnetic properties. 
    more » « less
  3. Abstract The Van Allen Probes Electric Fields and Waves (EFW) instrument provided measurements of electric fields and spacecraft floating potentials over a wide dynamic range from DC to 6.5 kHz near the equatorial plane of the inner magnetosphere between 600 km altitude and 5.8 Re geocentric distance from October 2012 to November 2019. The two identical instruments provided data to investigate the quasi-static and low frequency fields that drive large-scale convection, waves induced by interplanetary shock impacts that result in rapid relativistic particle energization, ultra-low frequency (ULF) MHD waves which can drive radial diffusion, and higher frequency wave fields and time domain structures that provide particle pitch angle scattering and energization. In addition, measurements of the spacecraft potential provided a density estimate in cold plasmas ( $$<20~\text{eV}$$ < 20 eV ) from 10 to $$3000~\text{cm}^{-3}$$ 3000 cm − 3 . The EFW instrument provided analog electric field signals to EMFISIS for wave analysis, and it received 3d analog signals from the EMFISIS search coil sensors for inclusion in high time resolution waveform data. The electric fields and potentials were measured by current-biased spherical sensors deployed at the end of four 50 m booms in the spacecraft spin plane (spin period $$\sim11~\text{sec}$$ ∼ 11 sec ) and a pair of stacer booms with a total tip-tip separation of 15 m along the spin axis. Survey waveform measurements at 16 and/or 32 S/sec (with a nominal uncertainty of 0.3 mV/m over the prime mission) were available continuously while burst waveform captures at up to 16,384 S/sec provided high frequency waveforms. This post-mission paper provides the reader with information useful for accessing, understanding and using EFW data. Selected science results are discussed and used to highlight instrument capabilities. Science quantities, data quality and error sources, and analysis routines are documented. 
    more » « less
  4. Context. The first encounters of Parker Solar Probe (PSP) with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes. Aims. We report the direct piece of evidence for magnetic reconnection occurring at the boundaries of three switchbacks crossed by PSP at a distance of 45 to 48 solar radii to the Sun during its first encounter. Methods. We analyse the magnetic field and plasma parameters from the FIELDS and Solar Wind Electrons Alphas and Protons instruments. Results. The three structures analysed all show typical signatures of magnetic reconnection. The ion velocity and magnetic field are first correlated and then anti-correlated at the inbound and outbound edges of the bifurcated current sheets with a central ion flow jet. Most of the reconnection events have a strong guide field and moderate magnetic shear, but one current sheet shows indications of quasi anti-parallel reconnection in conjunction with a magnetic field magnitude decrease by 90%. Conclusions. Given the wealth of intense current sheets observed by PSP, reconnection at switchback boundaries appears to be rare. However, as the switchback boundaries accomodate currents, one can conjecture that the geometry of these boundaries offers favourable conditions for magnetic reconnection to occur. Such a mechanism would thus contribute in reconfiguring the magnetic field of the switchbacks, affecting the dynamics of the solar wind and eventually contributing to the blending of the structures with the regular wind as they propagate away from the Sun. 
    more » « less
  5. null (Ed.)