Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Seagrass ecosystems are recognized for their capacity to sequester and store organic carbon, but there is large variability in soil organic carbon stocks associated with plant traits and environmental conditions, making the quantification and scaling of carbon storage and fluxes needed to contribute to climate change mitigation highly challenging. Here, we provide estimates of carbon stocks associated with seagrass systems (biomass and soil) through analyses of a comprehensive global database including 2700+ seagrass soil cores. The median global soil Corg stock estimate is 24.2 (12.4 – 44.9) Mg Corg ha−1 in the top 30 cm of soil, 27% lower than estimates from previous global syntheses, refining the IPCC Tier 1 soil Corg stock currently used for carbon accounting in places without local data. We estimate that seagrass carbon stocks at risk of degradation could emit 1,154 Tg (665 – 1699) CO2 with a social cost of $213 billion (2020 US dollars), if no action is taken to conserve these habitats.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract Seagrasses are increasingly recognized for their ecosystem functions and services. However, both natural and anthropogenic stressors impact seagrass functional traits, for example by altering nutrient regimes. Here, we synthesize 27 yr of data from regional, long‐term seagrass and water quality monitoring programs of south Florida to investigate the impacts of relative nutrient availability on seagrass abundance (as expressed by percent cover) across an oligotrophic seascape. We employ linear mixed‐effect models and generalized additive models to show that seagrass abundance is driven by interannual variations in nutrient concentrations, which are ultimately controlled by climate oscillations (El Niño Southern Oscillation Atlantic Multidecadal Oscillation) via regional rainfall‐runoff relationships. Our study suggests that climate oscillations drive interannual variations in seagrass cover on a regional scale, with high‐rainfall years leading to increased nitrogen availability and higher seagrass abundance in typically nitrogen‐limited backreef meadows. Conversely, these periods are associated with reduced seagrass cover at the more P‐limited inshore sites and in Florida Bay, with yet unknown consequences for the provision of seagrass ecosystem services. We show that nutrient delivery from runoff can have diverging impacts on benthic communities, depending on spatial patterns of relative nutrient limitation, with some N‐limited seagrass meadows showing resilience to periodic nutrient enrichment.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Although seagrass ecosystems are valued for the services they provide, anthropogenic impacts have led to global declines in seagrass area. South Florida harbors one of the most extensive and iconic seagrass landscapes in the world, but historic seagrass losses appeared to threaten their integrity. The establishment of the Florida Keys National Marine Sanctuary (FKNMS) in 1995 created a benthic community and water quality monitoring network to aid management efforts. With this study, we report on the status and trajectories of benthic communities in South Florida using 25 years of monitoring data. Overall, most of our permanent monitoring sites maintained stable benthic communities over the period of observation. However, for areas that did experience decline, we identified mechanisms for loss of the climax seagrass Thalassia testudinum in the FKNMS with no or only partial recovery over decadal timescales. We observed a shift towards fast-growing Halodule wrightii meadows at anthropogenically nutrient-enriched nearshore sites along the Florida Keys. In addition, we describe almost complete loss of seagrass meadows at some exposed, back-reef sites offshore from the Florida Keys resulting from physical disturbance by major hurricanes. This study demonstrates the utility of long-term monitoring programs for the identification of benthic community trajectories and their putative drivers on the seascape scale, offering valuable lessons for the design of future seagrass monitoring programs.more » « less
-
Abstract Malaria-causing protozoa of the genusPlasmodiumhave exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data fromP. falciparum,P. vivaxandP. malariaefrom 16 countries spanning around 5,500 years of human history. We identifiedP. vivaxandP. falciparumacross geographically disparate regions of Eurasia from as early as the fourth and first millenniabce, respectively; forP. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories forP. falciparumandP. vivaxin the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of AmericanP. vivax, whereas the trans-Atlantic slave trade probably introducedP. falciparuminto the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact ofPlasmodiumparasites on human history. Finally, our unexpected discovery ofP. falciparumin the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.more » « less
-
The organic carbon (Corg) stored in seagrass meadows is globally significant and could be relevant in strategies to mitigate increasing CO2 concentration in the atmosphere. Most of that stored Corg is in the soils that underlie the seagrasses. We explored how seagrass and soil characteristics vary among seagrass meadows across the geographic range of turtlegrass (Thalassia testudinum) with a goal of illuminating the processes controlling soil organic carbon (Corg) storage spanning 23° of latitude. Seagrass abundance (percent cover, biomass, and canopy height) varied by over an order of magnitude across sites, and we found high variability in soil characteristics, with Corg ranging from 0.08 to 12.59% dry weight. Seagrass abundance was a good predictor of the Corg stocks in surficial soils, and the relative importance of seagrass-derived soil Corg increased as abundance increased. These relationships suggest that first-order estimates of surficial soil Corg stocks can be made by measuring seagrass abundance and applying a linear transfer function. The relative availability of the nutrients N and P to support plant growth was also correlated with soil Corg stocks. Stocks were lower at N-limited sites than at P-limited ones, but the importance of seagrass-derived organic matter to soil Corg stocks was not a function of nutrient limitation status. This finding seemed at odds with our observation that labile standard substrates decomposed more slowly at N-limited than at P-limited sites, since even though decomposition rates were 55% lower at N-limited sites, less Corg was accumulating in the soils. The dependence of Corg stocks and decomposition rates on nutrient availability suggests that eutrophication is likely to exert a strong influence on carbon storage in seagrass meadows.more » « less
-
Abstract The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1–8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the geneIFT8840,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.more » « less
An official website of the United States government
