skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kravtsov, Andrey V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We use a suite of hydrodynamics simulations of the interstellar medium (ISM) within a galactic disk, which includes radiative transfer, a nonequilibrium model of molecular hydrogen, and a realistic model for star formation and feedback, to study the structure of the ISM and H2abundance as a function of local ISM properties. We show that the star formation rate and structure of the ISM are sensitive to the metallicity of the gas with a progressively smoother density distribution with decreasing metallicity. In addition to the well-known trend of the HI–H2transition shifting to higher densities with decreasing metallicity, the maximum achieved molecular fraction in the ISM drops drastically atZ≲ 0.2Zas the formation time of H2becomes much longer than a typical lifetime of dense regions of the ISM. We present accurate fitting formulae for both volumetric and projected f H 2 measured on different scales as a function of gas metallicity, UV radiation field, and gas density. We show that when the formulae are applied to the patches in the simulated galaxy, the overall molecular gas mass is reproduced to better than a factor of ≲1.5 across the entire range of metallicities and scales. We also show that the presented fit is considerably more accurate than any of the previous f H 2 models and fitting formulae in the low-metallicity regime. The fit can thus be used for modeling molecular gas in low-resolution simulations and semi-analytic models of galaxy formation in the dwarf and high-redshift regimes. 
    more » « less
  2. We analyze high-resolution hydrodynamics simulations of an isolated disk dwarf galaxy with an explicit model for unresolved turbulence and turbulence-based star formation prescription. We examine the characteristic values of the star formation efficiency per free-fall time, ϵ f f , and its variations with local environment properties, such as metallicity, UV flux, and surface density. We show that the star formation efficiency per free-fall time in 10 pc star-forming regions of the simulated disks has values in the range ϵ f f 0.01 0.1 , similar to observational estimates, with no trend with metallicity and only a weak trend with the UV flux. Likewise, estimated using projected patches of 500 pc size does not vary with metallicity and shows only a weak trend with average UV flux and gas surface density. The characteristic values of ϵ f f 0.01 0.1 arise naturally in the simulations via the combined effect of dynamical gas compression and ensuing stellar feedback that injects thermal and turbulent energy. The compression and feedback regulate the virial parameter, α v i r , in star-forming regions, limiting it to α v i r 3 10 . Turbulence plays an important role in the universality of ϵ f f because turbulent energy and its dissipation are not sensitive to metallicity and UV flux that affect thermal energy. Our results indicate that the universality of observational estimates of ϵ f f can be plausibly explained by the turbulence-driven and feedback-regulated properties of star-forming regions. 
    more » « less
  3. Abstract We compare the performance of energy-based and entropy-conserving schemes for modeling nonthermal energy components, such as unresolved turbulence and cosmic rays, using idealized fluid dynamics tests and isolated galaxy simulations. While both methods are aimed to model advection and adiabatic compression or expansion of different energy components, the energy-based scheme numerically solves the nonconservative equation for the energy density evolution, while the entropy-conserving scheme uses a conservative equation for modified entropy. Using the standard shock tube and Zel’dovich pancake tests, we show that the energy-based scheme results in a spurious generation of nonthermal energy on shocks, while the entropy-conserving method evolves the energy adiabatically to machine precision. We also show that, in simulations of an isolatedLgalaxy, switching between the schemes results in ≈20%–30% changes of the total star formation rate and a significant difference in morphology, particularly near the galaxy center. We also outline and test a simple method that can be used in conjunction with the entropy-conserving scheme to model the injection of nonthermal energies on shocks. Finally, we discuss how the entropy-conserving scheme can be used to capture the kinetic energy dissipated by numerical viscosity into the subgrid turbulent energyimplicitly, without explicit source terms that require calibration and can be rather uncertain. Our results indicate that the entropy-conserving scheme is the preferred choice for modeling nonthermal energy components, a conclusion that is equally relevant for Eulerian and moving-mesh fluid dynamics codes. 
    more » « less
  4. null (Ed.)
    We compare the performance of energy-based and entropy-conservative schemes for modeling nonthermal energy components, such as unresolved turbulence and cosmic rays, using idealized fluid dynamics tests and isolated galaxy simulations. While both methods are aimed to model advection and adiabatic compression or expansion of different energy components, the energy-based scheme numerically solves the non-conservative equation for the energy density evolution, while the entropy-conserving scheme uses a conservative equation for modified entropy. Using the standard shock tube and Zel'dovich pancake tests, we show that the energy-based scheme results in a spurious generation of nonthermal energy on shocks, while the entropy-conserving method evolves the energy adiabatically to machine precision. We also show that, in simulations of an isolated Lstar galaxy, switching between the schemes results in ~20-30% changes of the total star formation rate and a significant difference in morphology, particularly near the galaxy center. We also outline and test a simple method that can be used in conjunction with the entropy-conserving scheme to model the injection of nonthermal energies on shocks. Finally, we discuss how the entropy-conserving scheme can be used to capture the kinetic energy dissipated by numerical viscosity into the subgrid turbulent energy implicitly, without explicit source terms that require calibration and can be rather uncertain. Our results indicate that the entropy-conserving scheme is the preferred choice for modeling nonthermal energy components, a conclusion that is equally relevant for Eulerian and moving-mesh fluid dynamics codes. 
    more » « less
  5. null (Ed.)
    The spatial decorrelation of dense molecular gas and young stars observed on ≲ 1 kiloparsec scales in nearby galaxies indicates rapid dispersal of star-forming regions by stellar feedback. We explore the sensitivity of this decorrelation to different processes controlling the structure of the interstellar medium, the abundance of molecular gas, star formation, and feedback in a suite of simulations of an isolated dwarf galaxy with structural properties similar to NGC300 that self-consistently model radiative transfer and molecular chemistry. Our fiducial simulation reproduces the magnitude of decorrelation and its scale dependence measured in NGC300, and we show that this agreement is due to different aspects of feedback, including H2 dissociation, gas heating by the locally variable UV field, early mechanical feedback, and supernovae. In particular, early radiative and mechanical feedback affect the correlation on ≲100 pc scales, while supernovae play a significant role on ≳100 pc scales. The correlation is also sensitive to the choice of the local star formation efficiency per freefall time, eps_ff, which provides a strong observational constraint on eps_ff when the global star formation rate is independent of its value. Finally, we explicitly show that the degree of correlation between the peaks of molecular gas and star formation density is directly related to the distribution of the lifetimes of star-forming regions. 
    more » « less
  6. null (Ed.)
    ABSTRACT We examine the thermodynamic state and cooling of the low-z circumgalactic medium (CGM) in five FIRE-2 galaxy formation simulations of Milky Way-mass galaxies. We find that the CGM in these simulations is generally multiphase and dynamic, with a wide spectrum of largely non-linear density perturbations sourced by the accretion of gas from the intergalactic medium (IGM) and outflows from both the central and satellite galaxies. We investigate the origin of the multiphase structure of the CGM with a particle-tracking analysis and find that most of the low-entropy gas has cooled from the hot halo as a result of thermal instability triggered by these perturbations. The ratio of cooling to free-fall time-scales tcool/tff in the hot component of the CGM spans a wide range of ∼1−100 at a given radius but exhibits approximately constant median values of ∼5−20 at all radii 0.1Rvir < r < Rvir. These are similar to the ≈10−20 value typically adopted as the thermal instability threshold in ‘precipitation’ models of the ICM. Consequently, a one-dimensional model based on the assumption of a constant tcool/tff and hydrostatic equilibrium approximately reproduces the number density and entropy profiles of each simulation but only if it assumes the metallicity profile and temperature boundary condition taken directly from the simulation. We explicitly show that the tcool/tff value of a gas parcel in the hot component of the CGM does not predict its probability of subsequently accreting on to the central galaxy. This suggests that the value of tcool/tff is a poor predictor of thermal stability in gaseous haloes in which large-amplitude density perturbations are prevalent. 
    more » « less