skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krejci, Caroline"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A critical design decision for crowdsourcing platforms is the degree to which the platform mediator controls participant interactions. Platforms having a centralized model of mediation optimize for convenience, speed, and security in participant interactions, while platforms operating under decentralized control require greater user effort but offer them greater control and agency. The research described in this paper is a preliminary study using agent-based modeling to evaluate and compare the performance of crowd-shipping platforms with centralized/decentralized control over matchmaking of carriers and senders. Results indicate that centralized matchmaking protects the platform from premature failure when initial carrier/sender participation is low. Furthermore, when the platform’s assignment algorithm is designed to maximize platform revenue, subject to meeting carriers’ profit expectations, centralized matchmaking will tend to outperform decentralized matchmaking for both the mediator and the carriers. 
    more » « less
  2. Abstract The majority of food in the US is distributed through global/national supply chains that exclude locally-produced goods. This situation offers opportunities to increase local food production and consumption and is influenced by constraints that limit the scale of these activities. We conducted a study to assess perspectives of producers and consumers engaged in food systems of a major Midwestern city. We examined producers’ willingness to include/increase cultivation of local foods and consumers’ interest in purchasing/increasing local foods. We used focus groups of producers (two groups of conventional farmers, four local food producers) and consumers (three conventional market participants, two locavores) to pose questions about production/consumption of local foods. We transcribed discussions verbatim and examined text to identify themes, using separate affinity diagrams for producers and consumers. We found producers and consumers are influenced by thestatus quoand real and perceived barriers to local foods. We also learned participants believed increasing production and consumption of local foods would benefit their community and creating better infrastructure could enhance efforts to scale up local food systems. Focus group participants also indicated support from external champions/programs could support expansion of local foods. We learned that diversifying local food production was viewed as a way to support local community, increase access to healthy foods and reduce environmental impacts of conventional production. Our research indicates that encouraging producers and consumers in local food systems will be more successful when support for the local community is emphasized. 
    more » « less
  3. null (Ed.)
    Most people in the world live in urban areas, and their high population densities, heavy reliance on external sources of food, energy, and water, and disproportionately large waste production result in severe and cumulative negative environmental effects. Integrated study of urban areas requires a system-of-systems analytical framework that includes modeling with social and biophysical data. We describe preliminary work toward an integrated urban food-energy-water systems (FEWS) analysis using co-simulation for assessment of current and future conditions, with an emphasis on local (urban and urban-adjacent) food production. We create a framework to enable simultaneous analyses of climate dynamics, changes in land cover, built forms, energy use, and environmental outcomes associated with a set of drivers of system change related to policy, crop management, technology, social interaction, and market forces affecting food production. The ultimate goal of our research program is to enhance understanding of the urban FEWS nexus so as to improve system function and management, increase resilience, and enhance sustainability. Our approach involves data-driven co-simulation to enable coupling of disparate food, energy and water simulation models across a range of spatial and temporal scales. When complete, these models will quantify energy use and water quality outcomes for current systems, and determine if undesirable environmental effects are decreased and local food supply is increased with different configurations of socioeconomic and biophysical factors in urban and urban-adjacent areas. The effort emphasizes use of open-source simulation models and expert knowledge to guide modeling for individual and combined systems in the urban FEWS nexus. 
    more » « less
  4. null (Ed.)