skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kreutz, Karl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A robust chronology has been developed for the Denali Ice Cores, Begguya, Alaska (62.93 N 151.083 W, 3912 m asl (meters above sea level); also known as Mount Hunter) using a combination of techniques including annual‑layer counting, volcanics, radiocarbon dating, and the 1963 atmospheric nuclear‑weapons‑testing horizon. Radiocarbon dating confirms that there is early Holocene ice preserved at the bottom of the Denali Ice Cores. To confirm this, researchers at the University of Maine have produced oxygen‑isotope records. Examining the data from the twin cores, we see replicate isotope profiles in the bottom 8 meters of ice, showing a sharp decrease of δ^18O (oxygen‑18 isotope ratio) of nearly 6 ‰ (permil) near the bottom. To investigate whether this decrease is a climate signal or an artifact of basal‑ice dynamics, we collected trace‑element data across the oxygen‑isotope decrease. Because the basal ice of the Denali Ice Cores contains too high a sediment load to be melted and analyzed with aqueous inductively coupled plasma mass spectrometry (ICP‑MS), we analyzed Na (sodium), Mg (magnesium), Cu (copper), Pb (lead), Al (aluminum), Ca (calcium), Fe (iron), and S (sulfur) in the basal ice (207.35 m to 208.76 m depth) using laser‑ablation inductively coupled plasma mass spectrometry (LA‑ICP‑MS). The data are still being analyzed and compared with data from other methods to determine the cause of the oxygen‑isotope‑signal decrease. Researchers seeking to use this dataset should proceed with caution, as there is some evidence of contamination in the Pb and Cu analyses. 
    more » « less
  2. In the North Pacific, large swings in climate, such as the so-called Little Ice Age, Medieval Climate Anomaly, and the 4.2 ka (thousand years ago) event, have all occurred during the Middle-Late Holocene, providing an opportunity to investigate the regional climate and environmental response to hemisphere-scale changes. Two surface-to-bedrock ice cores (210 meters) recovered from the Begguya plateau (Alaska) have been used to document late Holocene climate variability in the North Pacific, underpinned by an annual layer counted timescale that extends to ~800 AD (190 meters depth). Here we describe new data and approaches being used to investigate Holocene and late Pleistocene conditions on Begguya through stable water isotope analysis performed in the bottom 20 meters of the cores. We have completed a full δ18O-H2O isotope profile for both cores, showing relatively uniform values through the core section thought to contain the 4.2ka event. In contrast, a pronounced but continuous 5‰ (permil) increase in δ18O-H2O occurs approximately 2 meters above the bed. Based on the location and structure of these changes, we tentatively infer that the isotope and chemistry excursions near the bed represent the late Pleistocene-Holocene transition, and the isotope profile in that area possibly shows evidence of a climate reversal akin to the Younger Dryas. 
    more » « less
  3. Abstract. Dimethyl sulfide (DMS) is primarily emitted by marine phytoplankton and oxidized in the atmosphere to form methanesulfonic acid (MSA) and sulfate aerosols. Ice cores in regions affected by anthropogenic pollution show an industrial-era decline in MSA, which has previously been interpreted as indicating a decline in phytoplankton abundance. However, a simultaneous increase in DMS-derived sulfate (bioSO4) in a Greenland ice core suggests that pollution-driven oxidant changes caused the decline in MSA by influencing the relative production of MSA versus bioSO4. Here we use GEOS-Chem, a global chemical transport model, and a zero-dimensional box model over three time periods (preindustrial era, peak North Atlantic NOx pollution, and 21st century) to investigate the chemical drivers of industrial-era changes in MSA and bioSO4, and we examine whether four DMS oxidation mechanisms reproduce trends and seasonality in observations. We find that box model and GEOS-Chem simulations can only partially reproduce ice core trends in MSA and bioSO4 and that wide variation in model results reflects sensitivity to DMS oxidation mechanism and oxidant concentrations. Our simulations support the hypothesized increase in DMS oxidation by the nitrate radical over the industrial era, which increases bioSO4 production, but competing factors such as oxidation by BrO result in increased MSA production in some simulations, which is inconsistent with observations. To improve understanding of DMS oxidation, future work should investigate aqueous-phase chemistry, which produces 82 %–99 % of MSA and bioSO4 in our simulations, and constrain atmospheric oxidant concentrations, including the nitrate radical, hydroxyl radical, and reactive halogens. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. An industrial-era drop in Greenland ice core methanesulfonic acid (MSA) is thought to herald a collapse in North Atlantic marine phytoplankton stocks related to a weakening of the Atlantic Meridional Overturning Circulation. In contrast, stable levels of marine biogenic sulfur production contradict this interpretation and point to changes in atmospheric oxidation as a potential cause of the MSA decline. However, the impact of oxidation on MSA production has not been quantified, nor has this hypothesis been rigorously tested. Here we present a multi-century MSA record from the Denali, Alaska, ice core, which shows an MSA decline similar in magnitude but delayed by 93 years relative to the Greenland record. Box model results using updated chemical pathways indicate that oxidation by industrial nitrate radicals has suppressed atmospheric MSA production, explaining most of Denali’s and Greenland’s MSA declines without requiring a change in phytoplankton production. The delayed timing of the North Pacific MSA decline, relative to the North Atlantic, reflects the distinct history of industrialization in upwind regions and is consistent with the Denali and Greenland ice core nitrate records. These results demonstrate that multi-decadal trends in industrial-era Arctic ice core MSA reflect rising anthropogenic pollution rather than declining marine primary production. 
    more » « less
  5. Abstract. Investigating North Pacific climate variability during warmintervals prior to the Common Era can improve our understanding of thebehavior of ocean–atmosphere teleconnections between low latitudes and theArctic under future warming scenarios. However, most of the existing icecore records from the Alaskan and Yukon region only allow access to climateinformation covering the last few centuries. Here we present asurface-to-bedrock age scale for a 210 m long ice core recovered in 2013from the summit plateau of Begguya (Mt. Hunter; Denali National Park,Central Alaska). Combining dating by annual layer counting with absolutedates from micro-radiocarbon dating, a continuous chronology for the entireice core archive was established using an ice flow model. Calibrated14C ages from the deepest section (209.1 m, 7.7 to 9.0 ka cal BP)indicate that basal ice on Begguya is at least of early Holocene origin. Aseries of samples from a shallower depth interval (199.8 to 206.6 m) weredated with near-uniform 14C ages (3 to 5 ka cal BP). Our resultssuggest this may be related to an increase in annual net snow accumulationrates over this period following the Northern Hemisphere Holocene ClimateOptimum (around 8 to 5 kyr BP). With absolute dates constraining thetimescale for the last >8 kyr BP, this paleo-archive will allowfuture investigations of Holocene climate and the regional evolution ofspatial and temporal changes in atmospheric circulation and hydroclimate inthe North Pacific. 
    more » « less
  6. Abstract The Gulf of Maine, located in the western North Atlantic, has undergone recent, rapid ocean warming but the lack of long-term, instrumental records hampers the ability to put these significant hydrographic changes into context. Here we present multiple 300-year long geochemical records (oxygen, nitrogen, and previously published radiocarbon isotopes) measured in absolutely-datedArctica islandicashells from the western Gulf of Maine. These records, in combination with climate model simulations, suggest that the Gulf of Maine underwent a long-term cooling over most of the last 1000 years, driven primarily by volcanic forcing and North Atlantic ocean dynamics. This cooling trend was reversed by warming beginning in the late 1800s, likely due to increased atmospheric greenhouse gas concentrations and changes in western North Atlantic circulation. The climate model simulations suggest that the warming over the last century was more rapid than almost any other 100-year period in the last 1000 years in the region. 
    more » « less
  7. Abstract. Remote sensing data are a crucial tool for monitoring climatological changes and glacier response in areas inaccessible for in situ measurements. The Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) product provides temperature data for remote glaciated areas where air temperature measurements from weather stations are sparse or absent, such as the St. Elias Mountains (Yukon, Canada). However, MODIS LSTs in the St. Elias Mountains have been found in prior studies to show an offset from available weather station measurements, the source of which is unknown. Here, we show that the MODIS offset likely results from the occurrence of near-surface temperature inversions rather than from the MODIS sensor’s large footprint size or from poorly constrained snow emissivity values used in LST calculations. We find that an offset in remote sensing temperatures is present not only in MODIS LST products but also in Advanced Spaceborne Thermal Emissions Radiometer (ASTER) and Landsat temperature products, both of which have a much smaller footprint (90–120 m) than MODIS (1 km). In all three datasets, the offset was most pronounced in the winter (mean offset >8 ∘C) and least pronounced in the spring and summer (mean offset <2 ∘C). We also find this enhanced seasonal offset in MODIS brightness temperatures, before the incorporation of snow surface emissivity into the LST calculation. Finally, we find the MODIS LST offset to be consistent in magnitude and seasonal distribution with modeled temperature inversions and to be most pronounced under conditions that facilitate near-surface inversions, namely low incoming solar radiation and wind speeds, at study sites Icefield Divide (60.68∘N, 139.78∘ W; 2,603 m a.s.l) and Eclipse Icefield (60.84∘ N, 139.84∘ W; 3017 m a.s.l.). Although these results do not preclude errors in the MODIS sensor or LST algorithm, they demonstrate that efforts to convert MODIS LSTs to an air temperature measurement should focus on understanding near-surface physical processes. In the absence of a conversion from surface to air temperature based on physical principles, we apply a statistical conversion, enabling the use of mean annual MODIS LSTs to qualitatively and quantitatively examine temperatures in the St. Elias Mountains and their relationship to melt and mass balance. 
    more » « less
  8. null (Ed.)
    Abstract Glacier surges are periodic episodes of mass redistribution characterized by dramatic increases in ice flow velocity and, sometimes, terminus advance. We use optical satellite imagery to document five previously unexamined surge events of Sít’ Kusá (Turner Glacier) in the St. Elias Mountains of Alaska from 1983 to 2013. Surge events had an average recurrence interval of ~5 years, making it the shortest known regular recurrence interval in the world. Surge events appear to initiate in the winter, with speeds reaching up to ~25 m d −1 . The surges propagate down-glacier over ~2 years, resulting in maximum thinning of ~100 m in the reservoir zone and comparable thickening at the terminus. Collectively, the rapid recurrence interval, winter initiation and down-glacier propagation suggest Sít’ Kusá's surges are driven by periodic changes in subglacial hydrology and glacier sliding. Elevation change observations from the northern tributary show a kinematic disconnect above and below an icefall located 23 km from the terminus. We suggest the kinematic disconnect inhibits drawdown from the accumulation zone above the icefall, which leads to a steady flux of ice into the reservoir zone, and contributes to the glacier's exceptionally short recurrence interval. 
    more » « less
  9. null (Ed.)