skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kristiansen, Martti_H K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the discovery of two quadruple star systems—TIC 285853156 and TIC 392229331—each consisting of two bound eclipsing binary stars. Among the most compact quadruples known, TIC 392229331 and TIC 285853156 have the second and third shortest outer orbital periods (145 days and 152 days, respectively) after BU Canis Minoris (122 days). We demonstrate that both systems are long-term dynamically stable despite substantial outer orbital eccentricities (0.33 for TIC 285853156 and 0.56 for TIC 392229331). We previously reported these systems in V. B. Kostov et al. and V. B Kostov et al. as 2 + 2 hierarchical quadruple candidates producing two sets of primary and secondary eclipses in TESS data, as well as prominent eclipse timing variations on both binary components. We combine all available TESS data and new spectroscopic observations into a comprehensive photodynamical model, proving that the component binary stars are gravitationally bound in both systems and finding accurate stellar and orbital parameters for both systems, including very precise determinations of the outer periods. TIC 285853156 and TIC 392229331 represent the latest addition to the small population of well-characterized proven quadruple systems dynamically interacting on detectable timescales. 
    more » « less
    Free, publicly-accessible full text available May 26, 2026