skip to main content

Search for: All records

Creators/Authors contains: "Krivitsky, Pavel N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    Motivated by a real life problem of sharing social network data that contain sensitive personal information, we propose a novel approach to release and analyse synthetic graphs to protect privacy of individual relationships captured by the social network while maintaining the validity of statistical results. A case-study using a version of the Enron e-mail corpus data set demonstrates the application and usefulness of the proposed techniques in solving the challenging problem of maintaining privacy and supporting open access to network data to ensure reproducibility of existing studies and discovering new scientific insights that can be obtained by analysing such data. We use a simple yet effective randomized response mechanism to generate synthetic networks under ε-edge differential privacy and then use likelihood-based inference for missing data and Markov chain Monte Carlo techniques to fit exponential family random-graph models to the generated synthetic networks.

    more » « less
  2. Summary

    Models of dynamic networks—networks that evolve over time—have manifold applications. We develop a discrete time generative model for social network evolution that inherits the richness and flexibility of the class of exponential family random-graph models. The model—a separable temporal exponential family random-graph model—facilitates separable modelling of the tie duration distributions and the structural dynamics of tie formation. We develop likelihood-based inference for the model and provide computational algorithms for maximum likelihood estimation. We illustrate the interpretability of the model in analysing a longitudinal network of friendship ties within a school.

    more » « less