Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Three recent global simulations of tidal disruption events (TDEs) have produced, using different numerical techniques and parameters, very similar pictures of their dynamics. In typical TDEs, after the star is disrupted by a supermassive black hole, the bound portion of the stellar debris follows highly eccentric trajectories, reaching apocenters of several thousand gravitational radii. Only a very small fraction is captured upon returning to the vicinity of the supermassive black hole. Nearly all of the debris returns to the apocenter, where shocks produce a thick irregular cloud on this radial scale and power the optical/UV flare. These simulation results imply that over a few years, the thick cloud settles into an accretion flow responsible for the long-term emission. Despite not being designed to match observations, and without any free parameters, the dynamical picture given by the three simulations aligns well with observations of typical events, correctly predicting the flares’ typical total radiated energy, luminosity, temperature, and emission-line width. On the basis of these predictions, we provide an updated method (TDEmass) to infer the stellar and black hole masses from a flare’s peak luminosity and temperature. This picture also correctly predicts that the luminosity observed years after the flare should be nearly constant. In addition, we show that in a magnitude-limited survey, if the intrinsic rate of TDEs is independent of black hole mass, the detected events will preferentially have black hole masses ∼106.3±0.3M⊙and stellar masses ∼1M⊙.more » « lessFree, publicly-accessible full text available July 25, 2026
-
Abstract Data derived from general relativistic magnetohydrodynamic simulations of accretion onto black holes can be used as input to a postprocessing scheme that predicts the radiated spectrum. Combining a relativistic Compton scattering radiation transfer solution in the corona with detailed local atmosphere solutions incorporating local ionization and thermal balance within the disk photosphere, it is possible to study both spectral formation and intrinsic spectral variability in the radiation from relativistic accretion disks. With this method, we find that radiatively efficient systems with black holes of 10M⊙accreting at ≈0.01 in Eddington units produce spectra very similar to those observed in the hard states of X-ray binaries. The spectral shape above 10 keV is well described by a power law with an exponential cutoff. Intrinsic turbulent variations lead to order-unity changes in bolometric luminosity, variations in the logarithmic spectral slope ∼0.1, and factor of 2 alterations in the cutoff energy on timescales ∼50 (MBH/10M⊙) ms. Within the corona, the range of gas temperature spans more than 1 order of magnitude. The wide distribution of temperatures is central to defining the spectrum: the logarithmic spectral slope is harder by ∼0.3 and the cutoff energy larger by a factor ∼10–30 than if the coronal temperature everywhere were its mass-weighted mean.more » « lessFree, publicly-accessible full text available March 24, 2026
-
Abstract Black hole–neutron star binaries are of interest in many ways: they are intrinsically transient, radiate gravitational waves detectable by LIGO, and may produceγ-ray bursts. Although it has long been assumed that their late-stage orbital evolution is driven entirely by gravitational wave emission, we show here that in certain circumstances, mass transfer from the neutron star onto the black hole can both alter the binary's orbital evolution and significantly reduce the neutron star's mass: when the fraction of its mass transferred per orbit is ≳10−2, the neutron star's mass diminishes by order unity, leading to mergers in which the neutron star mass is exceptionally small. The mass transfer creates a gas disk around the black holebeforemerger that can be comparable in mass to the debris remaining after merger, i.e., ~0.1M⊙. These processes are most important when the initial neutron star–black hole mass ratioqis in the range ≈0.2–0.8, the orbital semimajor axis is 40 ≲ a0/rg ≲ 300 (rg ≡ GMBH/c2), and the eccentricity is large ate0 ≳ 0.8. Systems of this sort may be generated through the dynamical evolution of a triple system, as well as by other means.more » « lessFree, publicly-accessible full text available January 3, 2026
-
Abstract The detection of GW170817/AT2017gfo inaugurated an era of multimessenger astrophysics, in which gravitational-wave and multiwavelength photon observations complement one another to provide unique insight into astrophysical systems. A broad theoretical consensus exists, in which the photon phenomenology of neutron star mergers largely rests upon the evolution of the small amount of matter left on bound orbits around the black hole or massive neutron star remaining after the merger. Because this accretion disk is far from inflow equilibrium, its subsequent evolution depends very strongly on its initial state, yet very little is known about how this state is determined. Using both snapshot and tracer particle data from a numerical relativity/MHD simulation of an equal-mass neutron star merger that collapses to a black hole, we show how gravitational forces arising in a nonaxisymmetric, dynamical spacetime supplement hydrodynamical effects in shaping the initial structure of the bound debris disk. The work done by hydrodynamical forces is ∼10 times greater than that due to time-dependent gravity. Although gravitational torques prior to remnant relaxation are an order of magnitude larger than hydrodynamical torques, their intrinsic sign symmetry leads to strong cancellation; as a result, hydrodynamical and gravitational torques have a comparable effect. We also show that the debris disk’s initial specific angular momentum distribution is sharply peaked at roughly the specific angular momentum of the merged neutron star’s outer layers, a fewrgc, and identify the regulating mechanism.more » « less
-
Abstract Accretion of debris seems to be the natural mechanism to power the radiation emitted during a tidal disruption event (TDE), in which a supermassive black hole tears apart a star. However, this requires the prompt formation of a compact accretion disk. Here, using a fully relativistic global simulation for the long-term evolution of debris in a TDE with realistic initial conditions, we show that at most a tiny fraction of the bound mass enters such a disk on the timescale of observed flares. To “circularize” most of the bound mass entails an increase in the binding energy of that mass by a factor of ∼30; we find at most an order-unity change. Our simulation suggests it would take a timescale comparable to a few tens of the characteristic mass fallback time to dissipate enough energy for “circularization.” Instead, the bound debris forms an extended eccentric accretion flow with eccentricity ≃0.4–0.5 by ∼two fallback times. Although the energy dissipated in shocks in this large-scale flow is much smaller than the “circularization” energy, it matches the observed radiated energy very well. Nonetheless, the impact of shocks is not strong enough to unbind initially bound debris into an outflow.more » « less
-
Abstract Many studies have found that neutron star mergers leave a fraction of the stars’ mass in bound orbits surrounding the resulting massive neutron star or black hole. This mass is a site ofr-process nucleosynthesis and can generate a wind that contributes to a kilonova. However, comparatively little is known about the dynamics determining its mass or initial structure. Here we begin to investigate these questions, starting with the origin of the disk mass. Using tracer particle as well as discretized fluid data from numerical simulations, we identify where in the neutron stars the debris came from, the paths it takes in order to escape from the neutron stars’ interiors, and the times and locations at which its orbital properties diverge from those of neighboring fluid elements that end up remaining in the merged neutron star.more » « less
-
Abstract Extreme tidal disruption events (eTDEs), which occur when a star passes very close to a supermassive black hole, may provide a way to observe a long-sought general relativistic effect: orbits that wind several times around a black hole and then leave. Through general relativistic hydrodynamics simulations, we show that such eTDEs are easily distinguished from most tidal disruptions, in which stars come close, but not so close, to the black hole. Following the stellar orbit, the debris is initially distributed in a crescent, it then turns into a set of tight spirals circling the black hole, which merge into a shell expanding radially outwards. Some mass later falls back toward the black hole, while the remainder is ejected. Internal shocks within the infalling debris power the observed emission. The resulting lightcurve rises rapidly to roughly the Eddington luminosity, maintains this level for between a few weeks and a year (depending on both the stellar mass and the black hole mass), and then drops. Most of its power is in thermal X-rays at a temperature ∼(1–2) × 10 6 K (∼100–200 eV). The debris evolution and observational features of eTDEs are qualitatively different from ordinary TDEs, making eTDEs a new type of TDE. Although eTDEs are relatively rare for lower-mass black holes, most tidal disruptions around higher-mass black holes are extreme. Their detection offers a view of an exotic relativistic phenomenon previously inaccessible.more » « less
-
Abstract Quasiperiodic erupters are a remarkable class of objects exhibiting very-large-amplitude quasiperiodic X-ray flares. Although numerous dynamical models have been proposed to explain them, relatively little attention has been given to using the properties of their radiation to constrain their dynamics. Here we show that the observed luminosity, spectrum, repetition period, duty cycle, and fluctuations in the latter two quantities point toward a model in which a main-sequence star on a moderately eccentric orbit around a supermassive black hole periodically transfers mass to the Roche lobe of the black hole; orbital dynamics lead to mildly relativistic shocks near the black hole; and thermal X-rays at the observed temperature are emitted by the gas as it flows away from the shock. Strong X-ray irradiation of the star by the flare itself augments the mass transfer, creates fluctuations in flare timing, and stirs turbulence in the stellar atmosphere that amplifies the magnetic field to a level at which magnetic stresses can accelerate infall of the transferred mass toward the black hole.more » « less
-
Abstract The magnetorotational instability (MRI) has been extensively studied in circular magnetized disks, and its ability to drive accretion has been demonstrated in a multitude of scenarios. There are reasons to expect eccentric magnetized disks to also exist, but the behavior of the MRI in these disks remains largely uncharted territory. Here we present the first simulations that follow the nonlinear development of the MRI in eccentric disks. We find that the MRI in eccentric disks resembles circular disks in two ways, in the overall level of saturation and in the dependence of the detailed saturated state on magnetic topology. However, in contrast with circular disks, the Maxwell stress in eccentric disks can be negative in some disk sectors, even though the integrated stress is always positive. The angular momentum flux raises the eccentricity of the inner parts of the disk and diminishes the same of the outer parts. Because material accreting onto a black hole from an eccentric orbit possesses more energy than material tracing the innermost stable circular orbit, the radiative efficiency of eccentric disks may be significantly lower than circular disks. This may resolve the “inverse energy problem” seen in many tidal disruption events.more » « less
An official website of the United States government
