skip to main content

Search for: All records

Creators/Authors contains: "Kroll, J. H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Earth’s atmosphere contains a multitude of emitted (primary) and chemically formed (secondary) gases and particles that degrade air quality and modulate the climate. Reactive organic carbon (ROC) species are the fuel of the chemistry of the atmosphere, dominating short-lived emissions, reactivity, and the secondary production of key species such as ozone, particulate matter, and carbon dioxide. Despite the central importance of ROC, the diversity and complexity of this class of species has been a longstanding obstacle to developing a comprehensive understanding of how the composition of our atmosphere, and the associated environmental implications, will evolve. Here, we characterize the role of ROC in atmospheric chemistry and the challenges inherent in measuring and modeling ROC, and highlight recent progress toward achieving mass closure for the complete description of atmospheric ROC.
  2. Organic compounds in the atmosphere vary widely in their molecular composition and chemical properties, so no single instrument can reasonably measure the entire range of ambient compounds. Over the past decade, a new generation of in situ , field-deployable mass spectrometers has dramatically improved our ability to detect, identify, and quantify these organic compounds, but no systematic approach has been developed to assess the extent to which currently available tools capture the entire space of chemical identity and properties that is expected in the atmosphere. Reduced-parameter frameworks that have been developed to describe atmospheric mixtures are exploited here to characterize the range of chemical properties accessed by a suite of instruments. Multiple chemical spaces ( e.g. oxidation state of carbon vs. volatility, and oxygen number vs. carbon number) were populated with ions measured by several mass spectrometers, with gas- and particle-phase α-pinene oxidation products serving as the test mixture of organic compounds. Few gaps are observed in the coverage of the parameter spaces by the instruments employed in this work, though the full extent to which comprehensive measurement was achieved is difficult to assess due to uncertainty in the composition of the mixture. Overlaps between individual ions and regions inmore »parameter space were identified, both between gas- and particle-phase measurements, and within each phase. These overlaps were conservatively found to account for little (<10%) of the measured mass. However, challenges in identifying overlaps and in accurately converting molecular formulas into chemical properties (such as volatility or reactivity) highlight a continued need to incorporate structural information into atmospheric measurements.« less