skip to main content

Search for: All records

Creators/Authors contains: "Kron, Kareesa J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work implements a genetic algorithm (GA) to discover organic catalysts for photoredox CO 2 reduction that are both highly active and resistant to degradation. The lowest unoccupied molecular orbital energy of the ground state catalyst is chosen as the activity descriptor and the average Mulliken charge on all ring carbons is chosen as the descriptor for resistance to degradation via carboxylation (both obtained using density functional theory) to construct the fitness function of the GA. We combine the results of multiple GA runs, each based on different relative weighting of the two descriptors, and rigorously assess GA performance by calculating electron transfer barriers to CO 2 reduction. A large majority of GA predictions exhibit improved performance relative to experimentally studied o-, m-, and p-terphenyl catalysts. Based on stringent cutoffs imposed on the average charge, barrier to electron transfer to CO 2 , and excitation energy, we recommend 25 catalysts for further experimental investigation of viability toward photoredox CO 2 reduction. 
    more » « less
  2. null (Ed.)
    To facilitate computational investigation of intermolecular interactions in the solution phase, we report the development of ALMO-EDA(solv), a scheme that allows the application of continuum solvent models within the framework of energy decomposition analysis (EDA) based on absolutely localized molecular orbitals (ALMOs). In this scheme, all the quantum mechanical states involved in the variational EDA procedure are computed with the presence of solvent environment so that solvation effects are incorporated in the evaluation of all its energy components. After validation on several model complexes, we employ ALMO-EDA(solv) to investigate substituent effects on two classes of complexes that are related to molecular CO 2 reduction catalysis. For [FeTPP(CO 2 -κC)] 2− (TPP = tetraphenylporphyrin), we reveal that two ortho substituents which yield most favorable CO 2 binding, –N(CH 3 ) 3 + (TMA) and –OH, stabilize the complex via through-structure and through-space mechanisms, respectively. The coulombic interaction between the positively charged TMA group and activated CO 2 is found to be largely attenuated by the polar solvent. Furthermore, we also provide computational support for the design strategy of utilizing bulky, flexible ligands to stabilize activated CO 2 via long-range Coulomb interactions, which creates biomimetic solvent-inaccessible “pockets” in that electrostatics is unscreened. For the reactant and product complexes associated with the electron transfer from the p -terphenyl radical anion to CO 2 , we demonstrate that the double terminal substitution of p -terphenyl by electron-withdrawing groups considerably strengthens the binding in the product state while moderately weakens that in the reactant state, which are both dominated by the substituent tuning of the electrostatics component. These applications illustrate that this new extension of ALMO-EDA provides a valuable means to unravel the nature of intermolecular interactions and quantify their impacts on chemical reactivity in solution. 
    more » « less