We present the first unquenched lattice-QCD calculation of the form factors for the decay
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract at nonzero recoil. Our analysis includes 15 MILC ensembles with$$B\rightarrow D^*\ell \nu $$ flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from$$N_f=2+1$$ fm down to 0.045 fm, while the ratio between the light- and the strange-quark masses ranges from 0.05 to 0.4. The valence$$a\approx 0.15$$ b andc quarks are treated using the Wilson-clover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavy-light meson chiral perturbation theory. Then we apply a model-independent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint lattice-QCD/experiment fit using several experimental datasets to determine the CKM matrix element . We obtain$$|V_{cb}|$$ . The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall$$\left| V_{cb}\right| = (38.40 \pm 0.68_{\text {th}} \pm 0.34_{\text {exp}} \pm 0.18_{\text {EM}})\times 10^{-3}$$ , which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is inmore »$$\chi ^2\text {/dof} = 126/84$$ -
Free, publicly-accessible full text available October 1, 2023