skip to main content

Search for: All records

Creators/Authors contains: "Krumhardt, Kristen M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. null (Ed.)
    Abstract. A new set of stratospheric aerosol geoengineering (SAG) model experiments has been performed with Community Earth System Model version 2 (CESM2) with the Whole Atmosphere Community Climate Model (WACCM6) that are based on the Coupled Model Intercomparison Project phase 6 (CMIP6) overshoot scenario (SSP5-34-OS) as a baseline scenario to limit global warming to 1.5 or 2.0 ∘C above 1850–1900 conditions. The overshoot scenario allows us to applying a peak-shaving scenario that reduces the needed duration and amount of SAG application compared to a high forcing scenario. In addition, a feedback algorithm identifies the needed amount of sulfur dioxide injections in the stratosphere at four pre-defined latitudes, 30∘ N, 15∘ N, 15∘ S, and 30∘ S, to reach three surface temperature targets: global mean temperature, and interhemispheric and pole-to-Equator temperature gradients. These targets further help to reduce side effects, including overcooling in the tropics, warming of high latitudes, and large shifts in precipitation patterns. These experiments are therefore relevant for investigating the impacts on society and ecosystems. Comparisons to SAG simulations based on a high emission pathway baseline scenario (SSP5-85) are also performed to investigate the dependency of impacts using different injection amounts to offset surface warming by SAG. We find that changes from present-day conditions around 2020 in some variables depend strongly on the defined temperature target (1.5 ∘C vs. 2.0 ∘C). These include surface air temperature and related impacts, the Atlantic Meridional Overturning Circulation, which impacts ocean net primary productivity, and changes in ice sheet surface mass balance, which impacts sea level rise. Others, including global precipitation changes and the recovery of the Antarctic ozone hole, depend strongly on the amount of SAG application. Furthermore, land net primary productivity as well as ocean acidification depend mostly on the global atmospheric CO2 concentration and therefore the baseline scenario. Multi-model comparisons of experiments that include strong mitigation and carbon dioxide removal with some SAG application are proposed to assess the robustness of impacts on societies and ecosystems. 
    more » « less
  3. Abstract

    At the base of the marine food web, phytoplankton are an essential component of the Arctic Ocean ecosystem and carbon cycle. Especially after sea ice retreats and light becomes more available to the Arctic Ocean each summer, phytoplankton productivity is limited by nutrient availability, which can be replenished by vertical mixing of the water column. One potential mixing mechanism is gale‐force wind associated with summer storm activity. Past studies show that sustained high winds (>10 m s−1) impart sufficient stress on the ocean surface to induce vertical mixing, and it has been speculated that greater storm activity may increase net primary productivity (NPP) on a year‐to‐year timescale. We test this idea using a combination of satellite products and reanalysis data from 1998 to 2018. After controlling for the amount of open water, sea‐surface temperature, and wind direction, we find evidence that greater frequency of high‐wind events in summer is associated with greater seasonal NPP in the Barents, Laptev, East Siberian, and southern Chukchi Seas. This relationship is only robust for the Barents and southern Chukchi Seas, which are more strongly impacted by inflow of relatively nutrient‐rich water from the Atlantic and Pacific Oceans, respectively. In other words, stormier summers may have higher productivity in several regions of the Arctic Ocean, but especially the two inflow seas. Additionally, a recent rise in high‐wind frequency in the Barents Sea may have contributed to the simultaneous increase in NPP.

    more » « less
  4. Abstract

    The Marine Biogeochemistry Library (MARBL) is a prognostic ocean biogeochemistry model that simulates marine ecosystem dynamics and the coupled cycles of carbon, nitrogen, phosphorus, iron, silicon, and oxygen. MARBL is a component of the Community Earth System Model (CESM); it supports flexible ecosystem configuration of multiple phytoplankton and zooplankton functional types; it is also portable, designed to interface with multiple ocean circulation models. Here, we present scientific documentation of MARBL, describe its configuration in CESM2 experiments included in the Coupled Model Intercomparison Project version 6 (CMIP6), and evaluate its performance against a number of observational data sets. The model simulates present‐day air‐sea CO2flux and many aspects of the carbon cycle in good agreement with observations. However, the simulated integrated uptake of anthropogenic CO2is weak, which we link to poor thermocline ventilation, a feature evident in simulated chlorofluorocarbon distributions. This also contributes to larger‐than‐observed oxygen minimum zones. Moreover, radiocarbon distributions show that the simulated circulation in the deep North Pacific is extremely sluggish, yielding extensive oxygen depletion and nutrient trapping at depth. Surface macronutrient biases are generally positive at low latitudes and negative at high latitudes. CESM2 simulates globally integrated net primary production (NPP) of 48 Pg C yr−1and particulate export flux at 100 m of 7.1 Pg C yr−1. The impacts of climate change include an increase in globally integrated NPP, but substantial declines in the North Atlantic. Particulate export is projected to decline globally, attributable to decreasing export efficiency associated with changes in phytoplankton community composition.

    more » « less