skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kuang, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zn Cl 2 solutions are promising electrolytes for aqueous zinc-ion batteries. Here, we report a joint computational and experimental study of the structural and dynamic properties of aqueous Zn Cl 2 electrolytes with concentrations ranging from salt-in-water to water-in-salt (WIS). By developing a neural network potential (NNP) model, we perform molecular dynamics (MD) simulations with accuracy but at much larger lengths and longer timescales. The NNP predicted structures are validated by the structure factors measured by X-ray total scattering experiments. The MD trajectories provide a comprehensive and quantitative picture of the Zn 2 + solvation shell structures. Additionally, we find that the O H covalent bonds in water are strengthened with increasing salt concentration, thus expanding the electrochemical stability window of aqueous electrolytes. In terms of dynamic properties, the calculated and experimentally measured conductivities are in good agreement. Through the analysis of the calculated cation transference number, we propose a three-stage charge carrier transport mechanism with increasing concentration: independent ion transport, strongly correlated ion transport, and small positive charge carrier diffusion through negatively charged polymeric clusters. Our study provides fundamental atomic scale insights into the structure and transport properties of the Zn Cl 2 electrolyte that can aid the optimization and development of WIS electrolytes. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. A capacitance increase phenomenon is observed for MoO 3 electrodes synthesized via a sol-gel process in the presence of dopamine hydrochloride (Dopa HCl) as compared to α-MoO 3 electrodes in 5M ZnCl 2 aqueous electrolyte. The synthesis approach is based on a hydrogen peroxide-initiated sol-gel reaction to which the Dopa HCl is added. The powder precursor (Dopa) x MoO y , is isolated from the metastable gel using freeze-drying. Hydrothermal treatment (HT) of the precursor results in the formation of MoO 3 accompanied by carbonization of the organic molecules; designated as HT-MoO 3 /C. HT of the precipitate formed in the absence of dopamine in the reaction produced α-MoO 3 , which was used as a reference material in this study (α-MoO 3 -ref). Scanning electron microscopy (SEM) images show a nanobelt morphology for both HT-MoO 3 /C and α-MoO 3 -ref powders, but with distinct differences in the shape of the nanobelts. The presence of carbonaceous content in the structure of HT-MoO 3 /C is confirmed by FTIR and Raman spectroscopy measurements. X-ray diffraction (XRD) and Rietveld refinement analysis demonstrate the presence of α-MoO 3 and h-MoO 3 phases in the structure of HT-MoO 3 /C. The increased specific capacitance delivered by the HT-MoO 3 /C electrode as compared to the α-MoO 3 -ref electrode in 5M ZnCl 2 electrolyte in a −0.25–0.70 V vs. Ag/AgCl potential window triggered a more detailed study in an expanded potential window. In the 5M ZnCl 2 electrolyte at a scan rate of 2 mV s −1 , the HT-MoO 3 /C electrode shows a second cycle capacitance of 347.6 F g −1 . The higher electrochemical performance of the HT-MoO 3 /C electrode can be attributed to the presence of carbon in its structure, which can facilitate electron transport. Our study provides a new route for further development of metal oxides for energy storage applications. 
    more » « less