skip to main content

Search for: All records

Creators/Authors contains: "Kuhlman, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the simultaneous propagation of two contagions over a social network. We assume a threshold model for the propagation of the two contagions and use the formal framework of discrete dynamical systems. In particular, we study an optimization problem where the goal is to minimize the total number of infected nodes subject to a budget constraint on the total number of nodes that can be vaccinated. While this problem has been considered in the literature for a single contagion, our work considers the simultaneous propagation of two contagions. Since the optimization problem is NP-hard, we develop a heuristic basedmore »on a generalization of the set cover problem. Using experiments on three real-world networks, we compare the performance of the heuristic with some baseline methods.« less
    Free, publicly-accessible full text available December 20, 2021
  2. Using a discrete dynamical system model for a networked social system, we consider the problem of learning a class of local interaction functions in such networks. Our focus is on learning local functions which are based on pairwise disjoint coalitions formed from the neighborhood of each node. Our work considers both active query and PAC learning models. We establish bounds on the number of queries needed to learn the local functions under both models.We also establish a complexity result regarding efficient consistent learners for such functions. Our experimental results on synthetic and real social networks demonstrate how the number ofmore »queries depends on the structure of the underlying network and number of coalitions.« less
  3. Abstract—Networks have entered the mainstream lexicon over the last ten years. This coincides with the pervasive use of networks in a host of disciplines of interest to industry and academia, including biology, neurology, genomics, psychology, social sciences, economics, psychology, and cyber-physical systems and infrastructure. Several dozen journals and conferences regularly contain articles related to networks. Yet, there are no general purpose cyberinfrastructures (CI) that can be used across these varied disciplines and domains. Furthermore, while there are scientific gateways that include some network science capabilities for particular domains (e.g., biochemistry, genetics), there are no general-purpose network-based scientific gateways. In thismore »work, we introduce net.science, a CI for Network Engineering and Science, that is designed to be a community resource. This paper provides an overview of net.science, addressing key requirements and concepts, CI components, the types of applications that our CI will support, and various dimensions of our evaluation process. Index Terms—cyberinfrastructure, network science, net.science« less
  4. Using synchronous dynamical systems (SyDSs) as a formal model for networked social systems, we study the problem of inferring users’ choices in such systems. We observe that SyDSs with deterministic and probabilistic threshold functions as local functions can capture users’ choices in the context of contagion propagation in social networks. We use an active query mechanism where a user interacts with a system by submitting queries, and the responses to the queries are used to infer the local functions. We develop methods that provide provably efficient query sets for inferring both deterministic and probabilistic forms of threshold functions. We alsomore »present experimental results using real world social networks.« less