Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rhabdophane is a hydrous phosphate that commonly replaces monazite as a weathering product in critical mineral deposits during the alteration of rare earth elements (REE) bearing carbonatites and alkaline igneous complexes. It is an important host to the light (L)REE (i.e., La to Gd) but the stability and structure of binary solid solutions between the Ce and the other LREE endmembers have not yet been determined experimentally. Here we present room temperature calorimetric experiments that were used to measure the enthalpy of precipitation of rhabdophane (Ce1−xREExPO4·nH2O; REE = La, Pr, Nd, Sm, Eu, and Gd). The solids were characterized using X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and the role of water in the rhabdophane structure was further determined using thermogravimetric analysis coupled with differential scanning calorimetry. The calorimetric experiments indicate a non-ideal behavior for all of the binary solid solutions investigated with an excess enthalpy of mixing (ΔHex) described by a 2- to 3-term Guggenheim parameters equation. The solid solutions were categorized into three groups: (1) binary Ce-La and Ce-Pr which display positive ΔHex values with a slight asymmetry; (2) binary Ce-Nd and Ce-Sm which display negative ΔHex values with a nearly symmetric shape; (3) Ce-Eu and Ce-Gd which display both negative and positive ΔHex values with nearly symmetric shape. The excess Gibbs energy (ΔGex) of the solid solutions was further investigated using a thermodynamic analysis approach of aqueous-solid solution equilibria and the optimization programs GEMS and GEMSFITS. The resulting ΔGex values combined with the calorimetric ΔHex values indicate that there is likely an excess entropy contribution implying important short-range structural modifications in the solid solutions dependent on the deviation of the REE ionic radii from the size of Ce3+. These observations corroborate with the trends in the Raman v1 stretching bands of the PO4-site. The excess molar volumes determined from X-ray diffraction analysis further indicate an overall asymmetric behavior in all of the studied binary solid solutions, which becomes increasingly important from La to Gd. The pronounced short-range order–disorder occurring in groups 2 and 3 solid solutions mimics some of the behavior observed from previous studies in anhydrous monazite solid solutions. This study highlights the potential to use the chemistry and the structural modifications of rhabdophane as potential indicators of formation conditions in geologic systems and permits improving our modeling capabilities of REE partitioning in critical minerals systems.more » « less
-
The MINES thermodynamic database (version 23) is a revised internally consistent thermodynamic dataset for minerals, aqueous species, and gases for simulating geochemical processes at hydrothermal conditions (≤5 kbar and ≤600 °C) with a focus on ore forming processes. The database follows a rolling release approach with new file versions becoming available once updated. The version number corresponds to the year of the most recent file creation and the number after the decimal separator indicates an upgrade during the year of release. The database is currently intended to be used with the GEMS geochemical modeling program ( http://gems.web.psi.ch/ ). Future versions will include human-readable data in .xlsx, .csv, and JSON files with all the data values, units, and references.more » « less
-
(Per)alkaline complexes and carbonatites evolve through a complex sequence of magmatic-hydrothermal processes. Most of them are overprinted by late auto-metasomatic processes which involves the mobilization, fractionation and/or enrichment of critical elements, such as the rare earth elements (REE) [1]. However, our current ability to predict the behavior of REE in high temperature aqueous fluids and interpret these natural systems using geochemical modeling depends on the availability of thermodynamic data for the REE minerals and aqueous species. Previous experimental work on REE solubility has focused on acidic aqueous fluids up to ~300 °C and considered chloride, fluoride and sulfate as important ligands for their transport [2]. However, magmatic-hydrothermal systems that form these critical mineral deposits may cover a wider range of fluid chemistries spanning acidic to alkaline pH as well as temperatures and pressures at which the fluids are supercritical. A few recently published studies have shown that other ligands (e.g., REE carbonates and/or combined fluoride species) could become important in near-neutral to alkaline fluids [3,4], and that REE mobility can also be increased in saline alkaline fluids reacted with fluorite [5]. Here we present new hydrothermal REE hydroxyl/chloride speciation data and REE phosphate/hydroxide minerals [6,7], calcite and fluorite solubility experiments as a function of pH, salinity and temperature. We use an integrated approach to link a wide array of experimental techniques (solubility, calorimetry, and spectroscopy) with thermodynamic optimizations using GEMSFITS [8], and present the development of a new experimental database for REE and its integration into the MINES thermodynamic database (https://geoinfo.nmt.edu/mines-tdb). The latter permits simulating hydrothermal fluid-rock interaction and ore-forming processes in critical mineral deposits to better understand the behavior of REE during metasomatism.more » « less
An official website of the United States government
