Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Abstract Elevated nighttime temperatures resulting from climate change significantly impact the rice crop worldwide. The rice ( Oryza sativa L.) plant is highly sensitive to high nighttime temperature (HNT) during grain-filling (reproductive stage). HNT stress negatively affects grain quality traits and has a major impact on the value of the harvested rice crop. In addition, along with grain dimensions determining rice grain market classes, the grain appearance and quality traits determine the rice grain market value. During the last few years, there has been a major concern for rice growers and the rice industry over the prevalence of rice grains opacity and the reduction of grain dimensions affected by HNT stress. Hence, the improvement of heat-stress tolerance to maintain grain quality of the rice crop under HNT stress will bolster future rice value in the market. In this study, 185 F 12 - recombinant inbred lines (RILs) derived from two US rice cultivars, Cypress (HNT-tolerant) and LaGrue (HNT-sensitive) were screened for the grain quality traits grain length (GL), grain width (GW), and percent chalkiness (%chalk) under control and HNT stress conditions and evaluated to identify the genomic regions associated with the grain quality traits. In total, there were 15 QTLs identified; 6 QTLs represented under control condition explaining 3.33% to 8.27% of the phenotypic variation, with additive effects ranging from − 0.99 to 0.0267 on six chromosomes and 9 QTLs represented under HNT stress elucidating 6.39 to 51.53% of the phenotypic variation, with additive effects ranging from − 8.8 to 0.028 on nine chromosomes for GL, GW, and % chalk. These 15 QTLs were further characterized and scanned for natural genetic variation in a japonica diversity panel (JDP) to identify candidate genes for GL, GW, and %chalk. We found 6160 high impact single nucleotide polymorphisms (SNPs) characterized as such depending on their type, region, functional class, position, and proximity to the gene and/or gene features, and 149 differentially expressed genes (DEGs) in the 51 Mbp genomic region comprising of the 15 QTLs. Out of which, 11 potential candidate genes showed high impact SNP associations. Therefore, the analysis of the mapped QTLs and their genetic dissection in the US grown Japonica rice genotypes at genomic and transcriptomic levels provide deep insights into genetic variation beneficial to rice breeders and geneticists for understanding the mechanisms related to grain quality under heat stress in rice.more » « less
-
High temperature impairs starch biosynthesis in developing rice grains and thereby increases chalkiness, affecting the grain quality. Genome encoded microRNAs (miRNAs) fine-tune target transcript abundances in a spatio-temporal specific manner, and this mode of gene regulation is critical for a myriad of developmental processes as well as stress responses. However, the role of miRNAs in maintaining rice grain quality/chalkiness during high daytime temperature (HDT) stress is relatively unknown. To uncover the role of miRNAs in this process, we used five contrasting rice genotypes (low chalky lines Cyp, Ben, and KB and high chalky lines LaGrue and NB) and compared the miRNA profiles in the R6 stage caryopsis samples from plants subjected to prolonged HDT (from the onset of fertilization through R6 stage of caryopsis development). Our small RNA analysis has identified approximately 744 miRNAs that can be grouped into 291 families. Of these, 186 miRNAs belonging to 103 families are differentially regulated under HDT. Only two miRNAs, Osa-miR444f and Osa-miR1866-5p, were upregulated in all genotypes, implying that the regulations greatly varied between the genotypes. Furthermore, not even a single miRNA was commonly up/down regulated specifically in the three tolerant genotypes. However, three miRNAs (Osa-miR1866-3p, Osa-miR5150-3p and canH-miR9774a,b-3p) were commonly upregulated and onemiRNA (Osa-miR393b-5p) was commonly downregulated specifically in the sensitive genotypes (LaGrue and NB). These observations suggest that few similarities exist within the low chalky or high chalky genotypes, possibly due to high genetic variation. Among the five genotypes used, Cypress and LaGrue are genetically closely related, but exhibit contrasting chalkiness under HDT, and thus, a comparison between them is most relevant. This comparison revealed a general tendency for Cypress to display miRNA regulations that could decrease chalkiness under HDT compared with LaGrue. This study suggests that miRNAs could play an important role in maintaining grain quality in HDT-stressed rice.more » « less
-
Eukaryotic cells are exquisitely responsive to external and internal cues, achieving precise control of seemingly diverse growth processes through a complex interplay of regulatory mechanisms. The budding yeast Saccharomyces cerevisiae provides a fascinating model of cell growth in its stress-responsive transition from planktonic single cells to a filamentous pseudohyphal growth form. During pseudohyphal growth, yeast cells undergo changes in morphology, polarity, and adhesion to form extended and invasive multicellular filaments. This pseudohyphal transition has been studied extensively as a model of conserved signaling pathways regulating cell growth and for its relevance in understanding the pathogenicity of the related opportunistic fungus Candida albicans, wherein filamentous growth is required for virulence. This review highlights the broad gene set enabling yeast pseudohyphal growth, signaling pathways that regulate this process, the role and regulation of proteins conferring cell adhesion, and interesting regulatory mechanisms enabling the pseudohyphal transition.more » « less
-
Fungi such as Candida albicans exist in biofilm phenotypes, which present as viscoelastic materials; however, a method to measure linear viscoelastic moduli, yield stress, and yield strain is lacking. Characterization methods for fungal materials have been limited to techniques specific to particular industries. Here, we present a method to measure the shear stress, strain amplitude, and creep of C. albicans BWP17 biofilms. Our method includes features tailored to the analysis of fungi including an in vitro growth protocol attuned to the slow growth rates of C. albicans biofilms and a resultant cultured biofilm that has sufficient integrity to be transferred to the rheometer tooling without disrupting its structure. The method's performance is demonstrated by showing that results are insensitive to gap, evaporative sealant, length of experiment, and specimen radius. Multiscale imaging of the fungal biofilm showed complex entanglement networks at the hundred-micrometer scale. For a wild-type strain cultivated for 14 days, using small-amplitude oscillatory rheology, we found that the elastic (G′) and viscous (G″) moduli were nearly independent of frequency over the range 0.1–10 s −1 , with magnitudes of [Formula: see text] and [Formula: see text], respectively. The yield stress was approximately [Formula: see text]. We modeled the linear creep response of the fungal biofilm and found that C. albicans has a characteristic relaxation time of [Formula: see text] and a viscosity of [Formula: see text]. We applied this method to probe the effects of altered chitin deposition in the C. albicans cell wall. Differences between the biofilm's phenotypic cell shape and rheological properties in mutants with altered chitin synthase activity were resolved. Discovering how genotypic, phenotypic, and environmental factors impact the material properties of these microbial communities can have implications for understanding fungal biofilm growth and aid in the development of remediation strategies.more » « less
-
This paper studies a family of generalized surface quasi-geostrophic (SQG) equations for an active scalar \begin{document}$$ \theta $$\end{document} on the whole plane whose velocities have been mildly regularized, for instance, logarithmically. The well-posedness of these regularized models in borderline Sobolev regularity have previously been studied by D. Chae and J. Wu when the velocity \begin{document}$ u $$\end{document} is of lower singularity, i.e., \begin{document}$$ u = -\nabla^{\perp} \Lambda^{ \beta-2}p( \Lambda) \theta $$\end{document}, where \begin{document}$$ p $$\end{document} is a logarithmic smoothing operator and \begin{document}$$ \beta \in [0, 1] $$\end{document}. We complete this study by considering the more singular regime \begin{document}$$ \beta\in(1, 2) $$\end{document}$. The main tool is the identification of a suitable linearized system that preserves the underlying commutator structure for the original equation. We observe that this structure is ultimately crucial for obtaining continuity of the flow map. In particular, straightforward applications of previous methods for active transport equations fail to capture the more nuanced commutator structure of the equation in this more singular regime. The proposed linearized system nontrivially modifies the flux of the original system in such a way that it coincides with the original flux when evaluated along solutions of the original system. The requisite estimates are developed for this modified linear system to ensure its well-posedness.more » « less
-
Since Barbara McClintock’s groundbreaking discovery of mobile DNA sequences some 70 years ago, transposable elements have come to be recognized as important mutagenic agents impacting genome composition, genome evolution, and human health. Transposable elements are a major constituent of prokaryotic and eukaryotic genomes, and the transposition mechanisms enabling transposon proliferation over evolutionary time remain engaging topics for study, suggesting complex interactions with the host, both antagonistic and mutualistic. The impact of transposition is profound, as over 100 human heritable diseases have been attributed to transposon insertions. Transposition can be highly mutagenic, perturbing genome integrity and gene expression in a wide range of organisms. This mutagenic potential has been exploited in the laboratory, where transposons have long been utilized for phenotypic screening and the generation of defined mutant libraries. More recently, barcoding applications and methods for RNA-directed transposition are being used towards new phenotypic screens and studies relevant for gene therapy. Thus, transposable elements are significant in affecting biology both in vivo and in the laboratory, and this review will survey advances in understanding the biological role of transposons and relevant laboratory applications of these powerful molecular tools.more » « less
-
Kronstad, James W. (Ed.)ABSTRACT The r egulation of A ce2 and m orphogenesis (RAM) pathway is an important regulatory network in the human fungal pathogen Candida albicans . The RAM pathway’s two most well-studied components, the NDR/Lats kinase Cbk1 and its putative substrate, the transcription factor Ace2, have a wide range of phenotypes and functions. It is not clear, however, which of these functions are specifically due to the phosphorylation of Ace2 by Cbk1. To address this question, we first compared the transcriptional profiles of CBK1 and ACE2 deletion mutants. This analysis indicates that, of the large number of genes whose expression is affected by deletion of CBK1 and ACE2 , only 5.5% of those genes are concordantly regulated. Our data also suggest that Ace2 directly or indirectly represses a large set of genes during hyphal morphogenesis. Second, we generated strains containing ACE2 alleles with alanine mutations at the Cbk1 phosphorylation sites. Phenotypic and transcriptional analysis of these ace2 mutants indicates that, as in Saccharomyces cerevisiae , Cbk1 regulation is important for daughter cell localization of Ace2 and cell separation during yeast-phase growth. In contrast, Cbk1 phosphorylation of Ace2 plays a minor role in C. albicans yeast-to-hypha transition. We have, however, discovered a new function for the Cbk1-Ace2 axis. Specifically, Cbk1 phosphorylation of Ace2 prevents the hypha-to-yeast transition. To our knowledge, this is one of the first regulators of the C. albicans hypha-to-yeast transition to be described. Finally, we present an integrated model for the role of Cbk1 in the regulation of hyphal morphogenesis in C. albicans . IMPORTANCE The r egulation of A ce2 and m orphogenesis (RAM) pathway is a key regulatory network that plays a role in many aspects of C. albicans pathobiology. In addition to characterizing the transcriptional effects of this pathway, we discovered that Cbk1 and Ace2, a key RAM pathway regulator-effector pair, mediate a specific set of the overall functions of the RAM pathway. We have also discovered a new function for the Cbk1-Ace2 axis: suppression of the hypha-to-yeast transition. Very few regulators of this transition have been described, and our data indicate that maintenance of hyphal morphogenesis requires suppression of yeast phase growth by Cbk1-regulated Ace2.more » « less
An official website of the United States government
