Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Multi-view learning is a rapidly evolving research area focused on developing diverse learning representations. In neural data analysis, this approach holds immense potential by capturing spatial, temporal, and frequency features. Despite its promise, multi-view application to functional near-infrared spectroscopy (fNIRS) has remained largely unexplored. This study addresses this gap by introducing fNIRSNET, a novel framework that generates and fuses multi-view spatio-temporal representations using convolutional neural networks. It investigates the combined informational strength of oxygenated (HbO2) and deoxygenated (HbR) hemoglobin signals, further extending these capabilities by integrating with electroencephalography (EEG) networks to achieve robust multimodal classification. Experiments involved classifying neural responses to auditory stimuli with nine healthy participants. fNIRS signals were decomposed into HbO2/HbR concentration changes, resulting in Parallel and Merged input types. We evaluated four input types across three data compositions: balanced, subject, and complete datasets. Our fNIRSNET's performance was compared with eight baseline classification models and merged it with four common EEG networks to assess the efficacy of combined features for multimodal classification. Compared to baselines, fNIRSNET using the Merged input type achieved the highest accuracy of 83.22%, 81.18%, and 91.58% for balanced, subject, and complete datasets, respectively. In the complete set, the approach effectively mitigated class imbalance issues, achieving sensitivity of 83.58% and specificity of 95.42%. Multimodal fusion of EEG networks and fNIRSNET outperformed single-modality performance with the highest accuracy of 87.15% on balanced data. Overall, this study introduces an innovative fusion approach for decoding fNIRS data and illustrates its integration with established EEG networks to enhance performance.more » « less
-
Multimodal neuroimaging using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) provides complementary views of cortical processes, including those related to auditory processing. However, current multimodal approaches often overlook potential insights that can be gained from nonlinear interactions between electrical and hemodynamic signals. Here, we explore electro-vascular phase-amplitude coupling (PAC) between low-frequency hemodynamic and high-frequency electrical oscillations during an auditory task. We further apply a temporally embedded canonical correlation analysis (tCCA)-general linear model (GLM)-based correction approach to reduce the possible effect of systemic physiology on fNIRS recordings. Before correction, we observed significant PAC between fNIRS and broadband EEG in the frontal region (p ≪ 0.05), β (p ≪ 0.05) and γ (p = 0.010) in the left temporal/temporoparietal (left auditory; LA) region, and γ (p = 0.032) in the right temporal/temporoparietal (right auditory; RA) region across the entire dataset. Significant differences in PAC across conditions (task versus silence) were observed in LA (p = 0.023) and RA (p = 0.049) γ sub-bands and in lower frequency (5-20 Hz) frontal activity (p = 0.005). After correction, significant fNIRS-γ-band PAC was observed in the frontal (p = 0.021) and LA (p = 0.025) regions, while fNIRS-α (p = 0.003) and fNIRS-β (p = 0.041) PAC were observed in RA. Decreased frontal γ-band (p = 0.008) and increased β-band (p ≪ 0.05) PAC were observed during the task. These outcomes represent the first characterization of electro-vascular PAC between fNIRS and EEG signals during an auditory task, providing insights into electro-vascular coupling in auditory processing.more » « less
-
Abstract Surface performance is critically influenced by topography in virtually all real-world applications. The current standard practice is to describe topography using one of a few industry-standard parameters. The most commonly reported number is$$R$$ a, the average absolute deviation of the height from the mean line (at some, not necessarily known or specified, lateral length scale). However, other parameters, particularly those that are scale-dependent, influence surface and interfacial properties; for example the local surface slope is critical for visual appearance, friction, and wear. The present Surface-Topography Challenge was launched to raise awareness for the need of a multi-scale description, but also to assess the reliability of different metrology techniques. In the resulting international collaborative effort, 153 scientists and engineers from 64 research groups and companies across 20 countries characterized statistically equivalent samples from two different surfaces: a “rough” and a “smooth” surface. The results of the 2088 measurements constitute the most comprehensive surface description ever compiled. We find wide disagreement across measurements and techniques when the lateral scale of the measurement is ignored. Consensus is established through scale-dependent parameters while removing data that violates an established resolution criterion and deviates from the majority measurements at each length scale. Our findings suggest best practices for characterizing and specifying topography. The public release of the accumulated data and presented analyses enables global reuse for further scientific investigation and benchmarking.more » « lessFree, publicly-accessible full text available September 1, 2026
An official website of the United States government
