- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Kumar, Harshit (1)
-
Yan, Mingdi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ReviewQuantification of Nanomaterial SurfacesHarshit Kumar and Mingdi Yan *Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA* Correspondence: Mingdi_Yan@uml.eduReceived: 24 February 2025; Revised: 3 March 2025; Accepted: 5 March 2025; Published: 10 March 2025Abstract: Quantification of nanomaterial surfaces is critical in the design of nanomaterials with predictable and tailored functions. Nanomaterials exhibit unique surface properties, such as high surface-to-volume ratios and tunable chemistry, which govern their stability, reactivity, and functions in a wide range of applications including catalysis, drug delivery, bioimaging, and environmental remediation. However, quantitative analysis of the nanomaterial surface is challenging due to the inherent heterogeneity, which affects the surface structure, ligand density and presentation. This mini review discusses several important aspects of surface quantification, including ligand structure, ligand density, functional groups, and surface reactions. Traditional analytical methods, such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and UV-vis spectroscopy, as well as emerging techniques that offer higher spatial resolution and sensitivity are discussed, and examples are given.more » « lessFree, publicly-accessible full text available January 10, 2026
An official website of the United States government
