We provide data on daily social contact intensity of clusters of people at different types of Points of Interest (POI) by zip code in Florida and California. This data is obtained by aggregating fine-scaled details of interactions of people at the spatial resolution of 10 m, which is then normalized as a social contact index. We also provide the distribution of cluster sizes and average time spent in a cluster by POI type. This data will help researchers perform fine-scaled, privacy-preserving analysis of human interaction patterns to understand the drivers of the COVID-19 epidemic spread and mitigation. Current mobility datasets either provide coarse-level metrics of social distancing, such as radius of gyration at the county or province level, or traffic at a finer scale, neither of which is a direct measure of contacts between people. We use anonymized, de-identified, and privacy-enhanced location-based services (LBS) data from opted-in cell phone apps, suitably reweighted to correct for geographic heterogeneities, and identify clusters of people at non-sensitive public areas to estimate fine-scaled contacts.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Buildings consume over 40% of global energy in their construction and operations contributing to over 39% of global carbon emission each year. This huge environmental footprint presents an excellent opportunity to reduce energy use and help deliver an environmentally sustainable built environment. Most of the energy is consumed by buildings as embodied energy (EE) and operational energy (OE). EE is used directly and indirectly during buildings’ initial construction, maintenance and replacement, and demolition phases through construction products and services. OE is used in the processes of heating, cooling, water heating, lighting, and operating building equipment. Most environmental optimization research has been centered on energy and carbon emission overlooking another critical sustainability aspect, water use. Each building also consumes a significant amount of freshwater as embodied water (EW) or virtual water in its initial construction, maintenance and replacement, and demolition phases. Since each primary and secondary energy source depletes water in its extraction, refinement or production, there is also a water expense associated with EE and OE use that must also be included in total EW use. The total EW, therefore, includes both non-energy and energy related water use. Research suggests that there are tradeoffs between EE and EW that may complicate design decisions such as material selection for environmental sustainability. In other words, a material selected for its lower EE may have higher EW and selecting such a material may not help reach environmental sustainability goals since water scarcity is becoming a grave problem. In this paper, we created an input-output-based hybrid (IOH) model for calculating and comparing EE and EW of building materials frequently used in building construction. The main goal is to examine and highlight any tradeoffs that may exist when selecting one material over another. The results reveal that there is a weak correlation between EE and total EW that is the sum of energy and non-energy water use, which means that a design decision made solely based on EE may conflict with EW. The share of energy related water use in total EW of construction materials also varies significantly (2.5%-31.2%), indicating that reducing energy use alone may not be sufficient to reduce freshwater use; additional efforts may be needed to decrease the use of materials and processes that are water intensive. The results of this study are significant to achieving the goal of creating a truly sustainable built environment.more » « less
-
Around the world, people increasingly generate data through their everyday activities. Much of this happens unwittingly through sensors, cameras, and other surveillance tools on roads, in cities, and at the workplace. However, how individuals and governments think about privacy varies significantly around the world. In this article, we explore differences between people’s attitudes toward privacy and data collection practices in the United States and the Netherlands, two countries with very different regulatory approaches to governing consumer privacy. Through a factorial vignette survey deployed in the two countries, we identify specific contextual factors associated with concerns regarding how personal data are being used. Using Nissenbaum’s framework of privacy as contextual integrity to guide our analysis, we consider the role that five factors play in this assessment: actors (those using data), data type, amount of data collected, reported purpose of data use, and inferences drawn from the data. Findings indicate nationally bound differences as well as shared concerns and indicate future directions for cross-cultural privacy research.more » « lessFree, publicly-accessible full text available January 1, 2024
-
Free, publicly-accessible full text available June 1, 2024
-
Abstract We present EUV solar observations showing evidence for omnipresent jetting activity driven by small-scale magnetic reconnection at the base of the solar corona. We argue that the physical mechanism that heats and drives the solar wind at its source is ubiquitous magnetic reconnection in the form of small-scale jetting activity (a.k.a. jetlets). This jetting activity, like the solar wind and the heating of the coronal plasma, is ubiquitous regardless of the solar cycle phase. Each event arises from small-scale reconnection of opposite-polarity magnetic fields producing a short-lived jet of hot plasma and Alfvén waves into the corona. The discrete nature of these jetlet events leads to intermittent outflows from the corona, which homogenize as they propagate away from the Sun and form the solar wind. This discovery establishes the importance of small-scale magnetic reconnection in solar and stellar atmospheres in understanding ubiquitous phenomena such as coronal heating and solar wind acceleration. Based on previous analyses linking the switchbacks to the magnetic network, we also argue that these new observations might provide the link between the magnetic activity at the base of the corona and the switchback solar wind phenomenon. These new observations need to be put in the bigger picture of the role of magnetic reconnection and the diverse form of jetting in the solar atmosphere.more » « lessFree, publicly-accessible full text available March 1, 2024
-
ABSTRACT We present the discovery of FRB 20210410D with the MeerKAT radio interferometer in South Africa, as part of the MeerTRAP commensal project. FRB 20210410D has a dispersion measure DM = 578.78 ± 2 ${\rm pc \, cm^{-3}}$ and was localized to subarcsec precision in the 2 s images made from the correlation data products. The localization enabled the association of the FRB with an optical galaxy at z = 0.1415, which when combined with the DM places it above the 3σ scatter of the Macquart relation. We attribute the excess DM to the host galaxy after accounting for contributions from the Milky Way’s interstellar medium and halo, and the combined effects of the intergalactic medium and intervening galaxies. This is the first FRB that is not associated with a dwarf galaxy to exhibit a likely large host galaxy DM contribution. We do not detect any continuum radio emission at the FRB position or from the host galaxy down to a 3σ rms of 14.4 $\mu$Jy beam−1. The FRB has a scattering delay of $29.4^{+2.8}_{-2.7}$ ms at 1 GHz, and exhibits candidate subpulses in the spectrum, which hint at the possibility of it being a repeating FRB. Although not constraining, we note that this FRB has not been seen to repeat in 7.28 h at 1.3 GHz with MeerKAT, 3 h at 2.4 GHz with Murriyang, and 5.7 h at simultaneous 2.3 GHz and 8.4 GHz observations with the Deep Space Network. We encourage further follow-up to establish a possible repeating nature.