Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 13, 2025
-
Abstract The higher frequency and intensity of sustained heat events have increased the demand for cooling energy across the globe. Current estimates of summer‐time energy demand are primarily based on Cooling Degree Days (CDD), representing the number of degrees a day's average temperature exceeds a predetermined comfort zone temperature. Through a comprehensive analysis of the historical energy demand data across the USA, we show that the commonly used CDD estimates fall significantly short (±25%) of capturing regional thermal comfort levels. Moreover, given the increasingly compelling evidence that air temperature alone is not sufficient for characterizing human thermal comfort, we extend the widely used CDD calculation to heat index, which accounts for both air temperature and humidity. Our results indicate significant mis‐estimation of regional thermal comfort when humidity is ignored. Our findings have significant implications for the security, sustainability, and resilience of the grid under climate change.more » « less
-
Abstract Soaring temperatures and increased occurrence of heatwaves have drastically increased air‐conditioning demand, a trend that will likely continue into the future. Yet, the impact of anthropogenic warming on household air conditioning is largely unaccounted for in the operation and planning of energy grids. Here, by leveraging the state‐of‐the‐art in machine learning and climate model projections, we find substantial increases in future residential air conditioning demand across the U.S.—up to 8% with a range of 5%–8.5% (13% with a range of 11%–15%) after anthropogenic warming of 1.5°C (2.0°C) in global mean temperature. To offset this climate‐induced demand, an increase in the efficiency of air conditioners by as much as 8% (±4.5%) compared to current levels is needed; without this daunting technological effort, we estimate that some states will face supply inadequacies of up to 75 million “household‐days” (i.e., nearly half a month per average current household) without air conditioning in a 2.0°C warmer world. In the absence of effective climate mitigation and technological adaptation strategies, the U.S. will face substantial increases in air conditioning demand and, in the event of supply inadequacies, there is increased risk of leaving millions without access to space cooling during extreme temperatures.more » « less
An official website of the United States government

Full Text Available