skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kumar, Sanath"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bacterial infections pose a serious public health concern, especially when an infectious disease has a multidrug resistant causative agent. Such multidrug resistant bacteria can compromise the clinical utility of major chemotherapeutic antimicrobial agents. Drug and multidrug resistant bacteria harbor several distinct molecular mechanisms for resistance. Bacterial antimicrobial agent efflux pumps represent a major mechanism of clinical resistance. The major facilitator superfamily (MFS) is one of the largest groups of solute transporters to date and includes a significant number of bacterial drug and multidrug efflux pumps. We review recent work on the modulation of multidrug efflux pumps, paying special attention to those transporters belonging primarily to the MFS. 
    more » « less
  2. Abstract The cover of woody perennial plants (trees and shrubs) in arid ecosystems is at least partially constrained by water availability. However, the extent to which maximum canopy cover is limited by rainfall and the degree to which soil water holding capacity and topography impacts maximum shrub cover are not well understood. Similar to other deserts in the U.S. southwest, plant communities at the Jornada Basin Long‐Term Ecological Research site in the northern Chihuahuan Desert have experienced a long‐term state change from perennial grassland to shrubland dominated by woody plants. To better understand this transformation, and the environmental controls and constraints on shrub cover, we created a shrub cover map using high spatial resolution images and explored how maximum shrub cover varies with landform, water availability, and soil characteristics. Our results indicate that when clay content is below ~18%, the upper limit of shrub cover is positively correlated with plant available water as mediated by surface soil clay influence on water retention. At surface soil clay contents >18%, maximum shrub cover decreases, presumably because the amount of water percolating to depths preferentially used by deep‐rooted shrubs is diminished. In addition, the relationship between shrub cover and density suggests that self‐thinning occurs in denser stands in most landforms of the Jornada Basin, indicating that shrub–shrub competition interacts with soil properties to constrain maximum shrub cover in the northern Chihuahuan Desert. 
    more » « less