skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kumar, Sanjoy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Microfluidic devices (MDs) present a novel method for detecting circulating tumor cells (CTCs), enhancing the process through targeted techniques and visual inspection. However, current approaches often yield heterogeneous CTC populations, necessitating additional processing for comprehensive analysis and phenotype identification. These procedures are often expensive, time‐consuming, and need to be performed by skilled technicians. In this study, we investigate the potential of a cost‐effective and efficient hyperuniform micropost MD approach for CTC classification. Our approach combines mathematical modeling of fluid–structure interactions in a simulated microfluidic channel with machine learning techniques. Specifically, we developed a cell‐based modeling framework to assess CTC dynamics in erythrocyte‐laden plasma flow, generating a large dataset of CTC trajectories that account for two distinct CTC phenotypes. Convolutional neural network (CNN) and recurrent neural network (RNN) were then employed to analyze the dataset and classify these phenotypes. The results demonstrate the potential effectiveness of the hyperuniform micropost MD design and analysis approach in distinguishing between different CTC phenotypes based on cell trajectory, offering a promising avenue for early cancer detection. 
    more » « less