skip to main content

Search for: All records

Creators/Authors contains: "Kumar, Sudhir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The origin of eukaryotes was among the most important events in the history of life, spawning a new evolutionary lineage that led to all complex multicellular organisms. However, the timing of this event, crucial for understanding its environmental context, has been difficult to establish. The fossil and biomarker records are sparse and molecular clocks have thus far not reached a consensus, with dates spanning 2.1–0.91 billion years ago (Ga) for critical nodes. Notably, molecular time estimates for the last common ancestor of eukaryotes are typically hundreds of millions of years younger than the Great Oxidation Event (GOE, 2.43–2.22 Ga), leading researchers to question the presumptive link between eukaryotes and oxygen. We obtained a new time estimate for the origin of eukaryotes using genetic data of both archaeal and bacterial origin, the latter rarely used in past studies. We also avoided potential calibration biases that may have affected earlier studies. We obtained a conservative interval of 2.2–1.5 Ga, with an even narrower core interval of 2.0–1.8 Ga, for the origin of eukaryotes, a period closely aligned with the rise in oxygen. We further reconstructed the history of biological complexity across the tree of life using three universal measures: cell types, genes, and genome size.more »We found that the rise in complexity was temporally consistent with and followed a pattern similar to the rise in oxygen. This suggests a causal relationship stemming from the increased energy needs of complex life fulfilled by oxygen.« less
    Free, publicly-accessible full text available September 1, 2024
  2. Free, publicly-accessible full text available February 1, 2024
  3. Through the artistic planning tool known to comic book artists and animators as storyboarding, students will embark on comic book–style adventures to plan, describe, and visualize the complex life of genes through the non-Mendelian concept of epistasis. Using storyboard templates, conceptual layouts, sketch booking, and cut-out genetic elements, students will construct their interpretation of the gene-gene interactions of epistasis. The incomplete story of the epistasis of human eye color will serve as the theme for this storyboard, which will also become its own assessment tool, inviting educators into a realm of a true STEAM experience.
    Free, publicly-accessible full text available November 1, 2023
  4. Abstract Motivation

    Timetrees depict evolutionary relationships between species and the geological times of their divergence. Hundreds of research articles containing timetrees are published in scientific journals every year. The TimeTree (TT) project has been manually locating, curating and synthesizing timetrees from these articles for almost two decades into a TimeTree of Life, delivered through a unique, user-friendly web interface ( The manual process of finding articles containing timetrees is becoming increasingly expensive and time-consuming. So, we have explored the effectiveness of text-mining approaches and developed optimizations to find research articles containing timetrees automatically.


    We have developed an optimized machine learning system to determine if a research article contains an evolutionary timetree appropriate for inclusion in the TT resource. We found that BERT classification fine-tuned on whole-text articles achieved an F1 score of 0.67, which we increased to 0.88 by text-mining article excerpts surrounding the mentioning of figures. The new method is implemented in the TimeTreeFinder (TTF) tool, which automatically processes millions of articles to discover timetree-containing articles. We estimate that the TTF tool would produce twice as many timetree-containing articles as those discovered manually, whose inclusion in the TT database would potentially double the knowledge accessible to a wider community. Manualmore »inspection showed that the precision on out-of-distribution recently published articles is 87%. This automation will speed up the collection and curation of timetrees with much lower human and time costs.

    Availability and implementation

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  5. We introduce biology to the artist’s design tool, the storyboard. This versatile organizing and visualizing artistic platform is introduced into the biology classroom to aid in an inventive and focused discovery process. Almost all biological concepts are dynamic, and storyboards offer biology, lecture, wet and computational labs, flexibility, inventiveness, and an opportunity for students to slow down the so-called steps of biological processes and moderate their observations. Storyboarding is a thoughtful and reflective discovery device with enormous potential to break with traditional biology classroom experiences and return to the root of the educational process: storytelling. It will encourage teachers to embark on the remodeling of the biological curriculum with specific technical skills that students and teachers should consider developing to make the STEAM experience tailored to the uniqueness of biological systems. Storyboards offer hands-on, illustrative, and interactive conversations about biology concepts. They are an “unplugged” and contemplative experiences, organizing frameworks for personal expression focused on biological wonders.
  6. Ozkan, Banu (Ed.)
    Abstract Invariant sites are a common feature of amino acid sequence evolution. The presence of invariant sites is frequently attributed to the need to preserve function through site-specific conservation of amino acid residues. Amino acid substitution models without a provision for invariant sites often fit the data significantly worse than those that allow for an excess of invariant sites beyond those predicted by models that only incorporate rate variation among sites (e.g., a Gamma distribution). An alternative is epistasis between sites to preserve residue interactions that can create invariant sites. Through computer-simulated sequence evolution, we evaluated the relative effects of site-specific preferences and site-site couplings in the generation of invariant sites and the modulation of the rate of molecular evolution. In an analysis of ten major families of protein domains with diverse sequence and functional properties, we find that the negative selection imposed by epistasis creates many more invariant sites than site-specific residue preferences alone. Further, epistasis plays an increasingly larger role in creating invariant sites over longer evolutionary periods. Epistasis also dictates rates of domain evolution over time by exerting significant additional purifying selection to preserve site couplings. These patterns illuminate the mechanistic role of epistasis in the processesmore »underlying observed site invariance and evolutionary rates.« less
  7. Abstract We present the fifth edition of the TimeTree of Life resource (TToL5), a product of the timetree of life project that aims to synthesize published molecular timetrees and make evolutionary knowledge easily accessible to all. Using the TToL5 web portal, users can retrieve published studies and divergence times between species, the timeline of a species’ evolution beginning with the origin of life, and the timetree for a given evolutionary group at the desired taxonomic rank. TToL5 contains divergence time information on 137,306 species, 41% more than the previous edition. The TToL5 web interface is now Americans with Disabilities Act-compliant and mobile-friendly, a result of comprehensive source code refactoring. TToL5 also offers programmatic access to species divergence times and timelines through an application programming interface, which is accessible at TToL5 is publicly available at
  8. Tamura, Koichiro (Ed.)
    Abstract Biodiversity analyses of phylogenomic timetrees have produced many high-profile examples of shifts in the rate of speciation across the tree of life. Temporally correlated events in ecology, climate, and biogeography are frequently invoked to explain these rate shifts. In a re-examination of 15 genomic timetrees and 25 major published studies of the pattern of speciation through time, we observed an unexpected correlation between the timing of reported rate shifts and the information content of sequence alignments. Here, we show that the paucity of sequence variation and insufficient species sampling in phylogenomic data sets are the likely drivers of many inferred speciation rate shifts, rather than the proposed biological explanations. Therefore, data limitations can produce predictable but spurious signals of rate shifts even when speciation rates may be similar across taxa and time. Our results suggest that the reliable detection of speciation rate shifts requires the acquisition and assembly of long phylogenomic alignments with near-complete species sampling and accurate estimates of species richness for the clades of study.
  9. Wallqvist, Anders (Ed.)
    Many pathogenic missense mutations are found in protein positions that are neither well-conserved nor fall in any known functional domains. Consequently, we lack any mechanistic underpinning of dysfunction caused by such mutations. We explored the disruption of allosteric dynamic coupling between these positions and the known functional sites as a possible mechanism for pathogenesis. In this study, we present an analysis of 591 pathogenic missense variants in 144 human enzymes that suggests that allosteric dynamic coupling of mutated positions with known active sites is a plausible biophysical mechanism and evidence of their functional importance. We illustrate this mechanism in a case study of β-Glucocerebrosidase (GCase) in which a vast majority of 94 sites harboring Gaucher disease-associated missense variants are located some distance away from the active site. An analysis of the conformational dynamics of GCase suggests that mutations on these distal sites cause changes in the flexibility of active site residues despite their distance, indicating a dynamic communication network throughout the protein. The disruption of the long-distance dynamic coupling caused by missense mutations may provide a plausible general mechanistic explanation for biological dysfunction and disease.
  10. Abstract Background Matrices of morphological characters are frequently used for dating species divergence times in systematics. In some studies, morphological and molecular character data from living taxa are combined, whereas others use morphological characters from extinct taxa as well. We investigated whether morphological data produce time estimates that are concordant with molecular data. If true, it will justify the use of morphological characters alongside molecular data in divergence time inference. Results We systematically analyzed three empirical datasets from different species groups to test the concordance of species divergence dates inferred using molecular and discrete morphological data from extant taxa as test cases. We found a high correlation between their divergence time estimates, despite a poor linear relationship between branch lengths for morphological and molecular data mapped onto the same phylogeny. This was because node-to-tip distances showed a much higher correlation than branch lengths due to an averaging effect over multiple branches. We found that nodes with a large number of taxa often benefit from such averaging. However, considerable discordance between time estimates from molecules and morphology may still occur as  some intermediate nodes may show large time differences between these two types of data. Conclusions Our findings suggest that node-more »and tip-calibration approaches may be better suited for nodes with many taxa. Nevertheless, we highlight the importance of evaluating the concordance of intrinsic time structure in morphological and molecular data before any dating analysis using combined datasets.« less