skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kumar, T. K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Two popular optimal search-based solvers for the multi-agent pathfinding (MAPF) problem, Conflict-Based Search (CBS) and Increasing Cost Tree Search (ICTS), have been extended separately for continuous time domains and symmetry breaking. However, an approach to symmetry breaking in continuous time domains remained elusive. In this work, we introduce a new algorithm, Conflict-Based Increasing Cost Search (CBICS), which is capable of symmetry breaking in continuous time domains by combining the strengths of CBS and ICTS. Our experiments show that CBICS often finds solutions faster than CBS and ICTS in both unit time and continuous time domains. 
    more » « less
  2. null (Ed.)
    Temporal reasoning is central to Artificial Intelligence (AI) and many of its applications. However, the existing algorithmic frameworks for temporal reasoning are not expressive enough to be applicable to robots with complex kinodynamic constraints typically described using differential equations. For example, while minimum and maximum velocity constraints can be encoded in Simple Temporal Networks (STNs), higher-order kinodynamic constraints cannot be represented in existing frameworks. In this paper, we present a novel framework for temporal reasoning called Kinodynamic Networks (KDNs). KDNs combine elements of existing temporal reasoning frameworks with the idea of Bernstein polynomials. The velocity profiles of robots are represented using Bernstein polynomials; and dynamic constraints on these velocity profiles can be converted to linear constraints on the to-be-determined coefficients of their Bernstein polynomials. We study KDNs for their attractive theoretical properties and apply them to the Multi-Agent Path Finding (MAPF) problem with higher-order kinodynamic constraints. We show that our approach is not only scalable but also yields smooth velocity profiles for all robots that can be executed by their controllers. 
    more » « less
  3. null (Ed.)
    The Multi-Agent Path Finding (MAPF) problem arises in many real-world applications, ranging from automated warehousing to multi-drone delivery. Solving the MAPF problem optimally is NP-hard, and existing optimal and bounded-suboptimal MAPF solvers thus usually do not scale to large MAPF instances. Greedy MAPF solvers scale to large MAPF instances, but their solution qualities are often bad. In this paper, we therefore propose a novel MAPF solver, Hierarchical Multi-Agent Path Planner (HMAPP), which creates a spatial hierarchy by partitioning the environment into multiple regions and decomposes a MAPF instance into smaller MAPF sub-instances for each region. For each sub-instance, it uses a bounded-suboptimal MAPF solver to solve it with good solution quality. Our experimental results show that HMAPP solves as large MAPF instances as greedy MAPF solvers while achieving better solution qualities on various maps. 
    more » « less
  4. The Multi-Agent Pathfinding (MAPF) problem is the fundamental problem of planning paths for multiple agents, where the key constraint is that the agents will be able to follow these paths concurrently without colliding with each other. Applications of MAPF include automated warehouses and autonomous vehicles. Research on MAPF has been flourishing in the past couple of years. Different MAPF research papers make different assumptions, e.g., whether agents can traverse the same road at the same time, and have different objective functions, e.g., minimize makespan or sum of agents’ actions costs. These assumptions and objectives are sometimes implicitly assumed or described informally. This makes it difficult to establish appropriate baselines for comparison in research papers, as well as making it difficult for practitioners to find the papers relevant to their concrete application. This paper aims to fill this gap and support researchers and practitioners by providing a unifying terminology for describing common MAPF assumptions and objectives. In addition, we also provide pointers to two MAPF benchmarks. In particular, we introduce a new grid-based benchmark for MAPF, and demonstrate experimentally that it poses a challenge to contemporary MAPF algorithms. 
    more » « less