skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kumbhar, Amar S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Chalcogel represents a unique class of meso‐ to macroporous nanomaterials that offer applications in energy and environmental pursuits. Here, the synthesis of an ion‐exchangeable amorphous chalcogel using a nominal composition of K2CoMo2S10(KCMS) at room temperature is reported. Synchrotron X‐ray pair distribution function (PDF), X‐ray absorption near‐edge structure (XANES), and extended X‐ray absorption fine structure (EXAFS) reveal a plausible local structure of KCMS gel consisting of Mo5+2and Mo4+3clusters in the vicinity of di/polysulfides which are covalently linked by Co2+ions. The ionically bound K+ions remain in the percolating pores of the Co–Mo–S covalent network. XANES of Co K‐edge shows multiple electronic transitions, including quadrupole (1s→3d), shakedown (1s→4p + MLCT), and dipole allowed 1s→4p transitions. Remarkably, despite a lack of regular channels as in some crystalline solids, the amorphous KCMS gel shows ion‐exchange properties with UO22+ions. Additionally, it also presents surface sorption via [S∙∙∙∙UO22+] covalent interactions. Overall, this study underscores the synthesis of quaternary chalcogels incorporating alkali metals and their potential to advance separation science for cations and oxo‐cationic species by integrating a synergy of surface sorption and ion‐exchange.

     
    more » « less
  2. null (Ed.)