skip to main content

Search for: All records

Creators/Authors contains: "Kumbier, Karl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Building and expanding on principles of statistics, machine learning, and scientific inquiry, we propose the predictability, computability, and stability (PCS) framework for veridical data science. Our framework, composed of both a workflow and documentation, aims to provide responsible, reliable, reproducible, and transparent results across the data science life cycle. The PCS workflow uses predictability as a reality check and considers the importance of computation in data collection/storage and algorithm design. It augments predictability and computability with an overarching stability principle. Stability expands on statistical uncertainty considerations to assess how human judgment calls impact data results through data and model/algorithm perturbations. As part of the PCS workflow, we develop PCS inference procedures, namely PCS perturbation intervals and PCS hypothesis testing, to investigate the stability of data results relative to problem formulation, data cleaning, modeling decisions, and interpretations. We illustrate PCS inference through neuroscience and genomics projects of our own and others. Moreover, we demonstrate its favorable performance over existing methods in terms of receiver operating characteristic (ROC) curves in high-dimensional, sparse linear model simulations, including a wide range of misspecified models. Finally, we propose PCS documentation based on R Markdown or Jupyter Notebook, with publicly available, reproducible codes and narratives to back up human choices made throughout an analysis. The PCS workflow and documentation are demonstrated in a genomics case study available on Zenodo. 
    more » « less
  2. Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the predictive, descriptive, relevant (PDR) framework for discussing interpretations. The PDR framework provides 3 overarching desiderata for evaluation: predictive accuracy, descriptive accuracy, and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post hoc categories, with subgroups including sparsity, modularity, and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often underappreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods. 
    more » « less