skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kundu, Debarshi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the evolving field of quantum computing, optimizing Quantum Error Correction (QEC) parameters is crucial due to the varying types and amounts of physical noise across quantum computers. Traditional simulators use a forward paradigm to derive logical error rates from inputs like code distance and rounds, but this can lead to resource wastage. Adjusting QEC parameters manually with tools like STIM is often inefficient, especially given the daily fluctuations in quantum error rates. To address this, we introduce MITS, a reverse engineering tool for STIM that automatically determines optimal QEC settings based on a given quantum computer’s noise model and a target logical error rate. This approach minimizes qubit and gate usage by precisely matching the necessary logical error rate with the constraints of qubit numbers and gate fidelity. Our investigations into various heuristics and machine learning models for MITS show that XGBoost and Random Forest regressions, with Pearson correlation coefficients of 0.98 and 0.96, respectively, are highly effective in this context. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026