skip to main content

Search for: All records

Creators/Authors contains: "Kunz, Matthew W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    The intracluster medium of galaxy clusters is an extremely hot and diffuse, nearly collisionless plasma, which hosts dynamically important magnetic fields of ∼μG strength. Seed magnetic fields of much weaker strength of astrophysical or primordial origin can be present in the intracluster medium. In collisional plasmas, which can be approximated in the magnetohydrodynamical (MHD) limit, the turbulent dynamo mechanism can amplify weak seed fields to strong dynamical levels efficiently by converting turbulent kinetic energy into magnetic energy. However, the viability of this mechanism in weakly collisional or completely collisionless plasma is much less understood. In this study, we explore the properties of the collisionless turbulent dynamo using three-dimensional hybrid-kinetic particle-in-cell simulations. We explore the properties of the collisionless turbulent dynamo in the kinematic regime for different values of the magnetic Reynolds number, Rm, initial magnetic-to-kinetic energy ratio, (Emag/Ekin)i, and initial Larmor ratio, (rLarmor/Lbox)i, i.e. the ratio of the Larmor radius to the size of the turbulent system. We find that in the ‘un-magnetized’ regime, (rLarmor/Lbox)i > 1, the critical magnetic Reynolds number for the dynamo action Rmcrit ≈ 107 ± 3. In the ‘magnetized’ regime, (rLarmor/Lbox)i ≲ 1, we find a marginally higher Rmcrit = 124 ± 8. We find that the growth rate of the magnetic energy does not depend on the strength of the seed magnetic field when the initial magnetization is fixed. We also study the distribution and evolution of the pressure anisotropy in the collisionless plasma and compare our results with the MHD turbulent dynamo.

    more » « less
  2. Abstract

    We report on a first-principles numerical and theoretical study of plasma dynamo in a fully kinetic framework. By applying an external mechanical force to an initially unmagnetized plasma, we develop a self-consistent treatment of the generation of “seed” magnetic fields, the formation of turbulence, and the inductive amplification of fields by the fluctuation dynamo. Driven large-scale motions in an unmagnetized, weakly collisional plasma are subject to strong phase mixing, which leads to the development of thermal pressure anisotropy. This anisotropy triggers the Weibel instability, which produces filamentary “seed” magnetic fields on plasma-kinetic scales. The plasma is thereby magnetized, enabling efficient stretching and folding of the fields by the plasma motions and the development of Larmor-scale kinetic instabilities such as the firehose and mirror. The scattering of particles off the associated microscale magnetic fluctuations provides an effective viscosity, regulating the field morphology and turbulence. During this process, the seed field is further amplified by the fluctuation dynamo until energy equipartition with the turbulent flow is reached. By demonstrating that equipartition magnetic fields can be generated from an initially unmagnetized plasma through large-scale turbulent flows, this work has important implications for the origin and amplification of magnetic fields in the intracluster and intergalactic mediums.

    more » « less

    We use local stratified shearing-box simulations to elucidate the impact of two-temperature thermodynamics on the thermal structure of coronae in radiatively efficient accretion flows. Rather than treating the coronal plasma as an isothermal fluid, we use a simple, parametrized cooling function that models the collisional transfer of energy from the ions to the rapidly cooling leptons. Two-temperature models naturally form temperature inversions, with a hot, magnetically dominated corona surrounding a cold disc. Simulations with net vertical flux (NF) magnetic fields launch powerful magnetocentrifugal winds that would enhance accretion in a global system. The outflow rates are much better converged with increasing box height than analogous isothermal simulations, suggesting that the winds into two-temperature coronae may be sufficiently strong to evaporate a thin disc and form a radiatively inefficient accretion flow under some conditions. We find evidence for multiphase structure in the corona, with broad density and temperature distributions, and we propose criteria for the formation of a multiphase corona. The fraction of cooling in the surface layers of the disc is substantially larger for NF fields compared to zero net-flux configurations, with moderate NF simulations radiating ≳30 per cent of the flow’s total luminosity above two mid-plane scale heights. Our work shows that NF fields may efficiently power the coronae of luminous Seyfert galaxies and quasars, providing compelling motivation for future studies of the heating mechanisms available to NF fields and the interplay of radiation with two-temperature thermodynamics.

    more » « less

    The nature of cosmic ray (CR) transport in the Milky Way remains elusive. The predictions of current microphysical CR transport models in magnetohydrodynamic (MHD) turbulence are drastically different from what is observed. These models usually focus on MHD turbulence with a strong guide field and ignore the impact of turbulent intermittency on particle propagation. This motivates our studying the alternative regime of large-amplitude turbulence with δB/B0 ≫ 1, in which intermittent small-scale magnetic field reversals are ubiquitous. We study particle transport in such turbulence by integrating trajectories in stationary snapshots. To quantify spatial diffusion, we use a set-up with continuous particle injection and escape, which we term the turbulent leaky box. We find that particle transport is very different from the strong guide-field case. Low-energy particles are better confined than high-energy particles, despite less efficient pitch-angle isotropization at small energies. In the limit of weak guide field, energy-dependent confinement is driven by the energy-dependent (in)ability to follow reversing magnetic field lines exactly and by the scattering in regions of ‘resonant curvature’, where the field line bends on a scale that is of the order of the local particle gyro-radius. We derive a heuristic model of particle transport in magnetic folds that approximately reproduces the energy dependence of transport found numerically. We speculate that CR propagation in the Galaxy is regulated by the intermittent field reversals highlighted here and discuss the implications of our findings for CR transport in the Milky Way.

    more » « less
  5. Abstract

    We demonstrate using linear theory and particle-in-cell (PIC) simulations that a synchrotron-cooling collisionless plasma acquires pressure anisotropy and, if the plasma beta is sufficiently high, becomes unstable to the firehose instability, in a process that we dub the synchrotron firehose instability (SFHI). The SFHI channels free energy from the pressure anisotropy of the radiating, relativistic electrons (and/or positrons) into small-amplitude, kinetic-scale, magnetic-field fluctuations, which pitch-angle scatter the particles and bring the plasma to a near-thermal state of marginal instability. The PIC simulations reveal a nonlinear cyclic evolution of firehose bursts interspersed by periods of stable cooling. We compare the SFHI for electron–positron and electron–ion plasmas. As a byproduct of the growing electron-firehose magnetic-field fluctuations, magnetized ions gain a pressure anisotropy opposite to that of the electrons. If these ions are relativistically hot, we find that they also experience cooling due to collisionless thermal coupling with the electrons, which we argue is mediated by a secondary ion-cyclotron instability. We suggest that the SFHI may be activated in a number of astrophysical scenarios, such as within ejecta from black hole accretion flows and relativistic jets, where the redistribution of energetic electrons from low to high pitch angles may cause transient bursts of radiation.

    more » « less
  6. We study the time-dependent formation and evolution of a current sheet (CS) in a magnetised, collisionless, high-beta plasma using hybrid-kinetic particle-in-cell simulations. An initially tearing-stable Harris sheet is frozen into a persistently driven incompressible flow so that its characteristic thickness gradually decreases in time. As the CS thins, the strength of the reconnecting field increases, and adiabatic invariance in the inflowing fluid elements produces a field-biased pressure anisotropy with excess perpendicular pressure. At large plasma beta, this anisotropy excites the mirror instability, which deforms the reconnecting field on ion-Larmor scales and dramatically reduces the effective thickness of the CS. Tearing modes whose wavelengths are comparable to that of the mirrors then become unstable, triggering reconnection on smaller scales and at earlier times than would have occurred if the thinning CS were to have retained its Harris profile. A novel method for identifying and tracking X-points is introduced, yielding X-point separations that are initially intermediate between the perpendicular and parallel mirror wavelengths in the upstream plasma. These mirror-stimulated tearing modes ultimately grow and merge to produce island widths comparable to the CS thickness, an outcome we verify across a range of CS formation timescales and initial CS widths. Our results may find their most immediate application in the tearing disruption of magnetic folds generated by turbulent dynamo in weakly collisional, high-beta, astrophysical plasmas. 
    more » « less
  7. We study within a fully kinetic framework the generation of “seed” magnetic fields through the Weibel instability, driven in an initially unmagnetized plasma by a large-scale shear force. We develop an analytical model that describes the development of thermal pressure anisotropy via phase mixing, the ensuing exponential growth of magnetic fields in the linear Weibel stage, and the saturation of the Weibel instability when the seed magnetic fields become strong enough to instigate gyromotion of particles and thereby inhibit their free-streaming. The predicted scaling dependencies of the saturated fields on key parameters (e.g., ratio of system scale to electron skin depth and forcing amplitude) are confirmed by two-dimensional and three-dimensional particle-in-cell simulations of an electron–positron plasma. This work demonstrates the spontaneous magnetization of a collisionless plasma through large-scale motions as simple as a shear flow and therefore has important implications for magnetogenesis in dilute astrophysical systems. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)