skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kunzmann, Dylan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper explores the kinematic synthesis, design, and pilot experimental testing of a six-legged walking robotic platform able to traverse through different terrains. We aim to develop a structured approach to designing the limb morphology using a relaxed kinematic task with incorporated conditions on foot-environments interaction, specifically contact force direction and curvature constraints, related to maintaining contact. The design approach builds up incrementally starting with studying the basic human leg walking trajectory and then defining a “relaxed” kinematic task. The “relaxed” kinematic task consists only of two contact locations (toe-off and heel-strike) with higher-order motion task specifications compatible with foot-terrain(s) contact and curvature constraints in the vicinity of the two contacts. As the next step, an eight-bar leg image is created based on the “relaxed” kinematic task and incorporated within a six-legged walking robot. Pilot experimental tests explore if the proposed approach results in an adaptable behavior which allows the platform to incorporate different walking foot trajectories and gait styles coupled to each environment. The results suggest that the proposed “relaxed” higher-order motion task combined with the leg morphological properties and feet material allowed the platform to walk stably on the different terrains. Here we would like to note that one of the main advantages of the proposed method in comparison with other existing walking platforms is that the proposed robotic platform has carefully designed limb morphology with incorporated conditions on foot-environment interaction. Additionally, while most of the existing multilegged platforms incorporate one actuator per leg, or per joint, our goal is to explore the possibility of using a single actuator to drive all six legs of the platform. This is a critical step which opens the door for the development of future transformative technology that is largely independent of human control and able to learn about the environment through their own sensory systems. 
    more » « less