skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kuraszkiewicz, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present first results from James Webb Space Telescope Near-Infrared Spectrograph, Mid-Infrared Instrument, and Keck Cosmic Webb Imager integral field spectroscopy of the powerful but highly obscured host galaxy of the jetted radio source Cygnus A. We detect 169 infrared emission lines at 1.7–27μm and explore the kinematics and physical properties of the extended narrow-line region (NLR) in unprecedented detail. The density-stratified NLR appears to be shaped by the initial blow-out and ongoing interaction of the radio jet with the interstellar medium, creating a multiphase bicone with a layered structure composed of molecular and ionized gas. The NLR spectrum, with strong coronal emission at kiloparsec scale, is well modeled by active galactic nucleus photoionization. We find evidence that the NLR is rotating around the radio axis, perhaps mediated by magnetic fields and driven by angular momentum transfer from the radio jet. The overall velocity field of the NLR is well described by 250 km s−1outflow along biconical spiral flow lines, combining both rotation and outflow signatures. There is particularly bright [Feii]λ1.644μm emission from a dense, high-velocity dispersion, photoionized clump of clouds found near the projected radio axis. Outflows of 600–2000 km s−1are found in bullets and streamers of ionized gas that may be ablated by the radio jet from these clouds, driving a local outflow rate of 40Myr−1
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  2. Aims.We aim to accurately measure the dynamical mass and distance of Cepheids by combining radial velocity measurements with interferometric observations. Cepheid mass measurements are particularly necessary for solving the Cepheid mass discrepancy, while independent distance determinations provide a crucial test of the period–luminosity relation andGaiaparallaxes. Methods.We used the multi-telescope interferometric combiner, the Michigan InfraRed Combiner (MIRC) of the Center for High Angular Resolution Astronomy (CHARA) Array, to detect and measure the astrometric positions of the high-contrast companion orbiting the Galactic Cepheid SU Cygni. We also present new radial velocity measurements from ultraviolet spectra taken with theHubbleSpace Telescope. The combination of interferometric astrometry with optical and ultraviolet spectroscopy provided the full orbital elements of the system, in addition to component masses and the distance to the Cepheid system. Results.We measured the mass of the Cepheid,MA = 4.859 ± 0.058 M, and its two companions,MBa = 3.595 ± 0.033 MandMBb = 1.546 ± 0.009 M. This is the most accurate existing measurement of the mass of a Galactic Cepheid (1.2%). Comparing with stellar evolution models, we show that the mass predicted by the tracks is higher than the measured mass of the Cepheid, which is similar to the conclusions of our previous work. We also measured the distance to the system to be 926.3 ± 5.0 pc, obtaining an unprecedented parallax precision of 6 μas (0.5%), which is the most precise and accurate distance for a Cepheid. This precision is similar to what is expected byGaiafor its last data release (DR5 in ∼2030) for single stars fainter thanG = 13, but is not guaranteed for stars as bright as SU Cyg. Conclusions.We demonstrate that evolutionary models remain incapable of accurately reproducing the measured mass of Cepheids, often predicting higher masses for the expected metallicity, even when factors such as rotation or convective core overshooting are taken into account. Our precise distance measurement allowed us to compare predictions from some period–luminosity relations. We find a disagreement of 0.2–0.5 mag with relations calibrated from photometry, while relations calibrated from a direct distance measurement are in better agreement. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026