skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kurek, Martin R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The West Siberian Lowland (WSL) contains some of the largest wetlands and most extensive peatlands on Earth, storing vast amounts of vulnerable carbon across permafrost‐free to continuous permafrost zones. As temperature and precipitation changes continue to alter the Siberian landscape, carbon transfer to the atmosphere and export to the Arctic Ocean will be impacted. However, the drivers of organic carbon transfer are largely unknown across this region. We characterized seasonal dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) composition of WSL rivers from the middle reaches of the Ob’ River in the permafrost‐free zone, as well as tributaries of the Taz River in the northern continuous permafrost zone. DOC and aromatic DOM properties increased from spring to autumn in the Ob’ tributaries, reflecting the seasonal transition from groundwater‐sourced to terrestrial DOM. Differences in molecular‐level signatures via ultra‐high resolution mass spectrometry revealed the influence of redox processes on DOM composition in the winter while terrestrial DOM sourcing shifted from surface litter aliphatics and highly unsaturated and phenolic high‐O/C (HUPHigh O/C) compounds in the spring to subsurface soils and HUPLow O/Ccompounds by autumn. Furthermore, aromaticity and organic N were related to landscape properties including peatlands, forest cover, and the ratio of needleleaf:broadleaf forests. Finally, the Taz River tributaries were similar to summer and autumn Ob’ tributaries, but more enriched in N and S‐containing compounds. These signatures were likely derived from thawing permafrost, which we expect to increase in northern rivers due to active layer expansion in a warming Arctic. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract Wetland and permafrost soils contain some of Earth's largest reservoirs of organic carbon, and these stores are threatened by rapid warming across the Arctic. Nearly half of northern wetlands are affected by permafrost. As these ecosystems warm, the cycling of dissolved organic matter (DOM) and the opportunities for microbial degradation are changing. This is particularly evident as the relationship between wetland and permafrost DOM dynamics evolves, especially with the introduction of permafrost‐derived DOM into wetland environments. Thus, understanding the interplay of DOM composition and microbial communities from wetlands and permafrost is critical to predicting the impact of released carbon on global carbon cycling. As little is understood about the interactions between wetland active layer and permafrost‐derived sources as they intermingle, we conducted experimental bioincubations of mixtures of DOM and microbial communities from two fen wetland depths (shallow: 0–15 cm, and deep: 15–30 cm) and two ages of permafrost soil (Holocene and Pleistocene). We found that the source of microbial inoculum was not a significant driver of dissolved organic carbon (DOC) degradation across treatments; rather, DOM source and specifically, DOM molecular composition, controlled the rate of DOC loss over 100 days of bioincubations. DOC loss across all treatments was negatively correlated with modified aromaticity index, O/C, and the relative abundance of condensed aromatic and polyphenolic formula, and positively correlated with H/C and the relative abundance of aliphatic and peptide‐like formula. Pleistocene permafrost‐derived DOC exhibited ∼70% loss during the bioincubation driven by its initial molecular‐level composition, highlighting its high bioavailability irrespective of microbial source. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026