skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Kurt, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Geyl, Roland ; Navarro, Ramón (Ed.)
    The optical fiber integral field unit (IFU) built to feed the near infrared (NIR) spectrograph for the 11-meter Southern African Large Telescope (SALT) has undergone prototyping and rigorous performance testing at Wash- burn Astronomical Laboratories of the University of Wisconsin-Madison Astronomy Department. The 43 m length of 256 fibers which make up the object and sky arrays and spares are routed from the SALT payload down into the spectrograph room in four separate cables. The IFU covers 344 arcsec2 on the sky, with the object array spanning a 552 arcsec2 near-rectangular area at roughly 56% fill-factor. Companion papers describe the mechanical design of the fiber cable that mitigates potential sources of mechanical strain on the optical fiber (Smith et al.) and details of the spectrograph (Wolf et al.). Here we present the results of the performance testing of various test cables as well as performance testing and end-to-end mapping of the fully-assembled science cable. The fiber optics experience an extreme temperature gradient at the ingress to the instrument enclosure held at -40 ◦C during operation. We find an increase in focal ratio degradation (FRD) when holding progressively longer lengths of test fiber at reduced temperature. However, we confirm that this temperature dependent FRD is negligible for our designed length of cold fiber. We also find negligible contributions to FRD from the rubber seal that breaches the room temperature strain relief box and the cold instrument enclosure. Our measure- ments characterize performance including the effects of internal fiber inhomogeneities, stress induced from fiber handling and termination, as well as any imperfections from end-polishing. We present the room-temperature laboratory performance measurements of the fully-assembled science cable; the effective total throughput the fiber cable delivers to the spectrograph collimator is 81±2.5% across all fibers accounting for all losses. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Abstract Information processing under conditions of uncertainty requires the involvement of cognitive control. Despite behavioral evidence of the supramodal function (i.e., independent of sensory modality) of cognitive control, the underlying neural mechanism needs to be directly tested. This study used functional magnetic imaging together with visual and auditory perceptual decision-making tasks to examine brain activation as a function of uncertainty in the two stimulus modalities. The results revealed a monotonic increase in activation in the cortical regions of the cognitive control network (CCN) as a function of uncertainty in the visual and auditory modalities. The intrinsic connectivity between the CCN and sensory regions was similar for the visual and auditory modalities. Furthermore, multivariate patterns of activation in the CCN predicted the level of uncertainty within and across stimulus modalities. These findings suggest that the CCN implements cognitive control by processing uncertainty as abstract information independent of stimulus modality. 
    more » « less
  4. null (Ed.)
  5. Abstract

    The rapid invasion of the non‐nativePhragmites australis(Poaceae, subfamily Arundinoideae) is a major threat to native wetland ecosystems in North America and elsewhere. We describe the first reference genome forPaustralisand compare invasive (ssp.australis) and native (ssp.americanus) genotypes collected from replicated populations across the Laurentian Great Lakes to deduce genomic bases driving its invasive success. Here, we report novel genomic features including aPhragmiteslineage‐specific whole genome duplication, followed by gene loss and preferential retention of genes associated with transcription factors and regulatory functions in the remaining duplicates. Comparative transcriptomic analyses revealed that genes associated with biotic stress and defence responses were expressed at a higher basal level in invasive genotypes, but native genotypes showed a stronger induction of defence responses when challenged by a fungal endophyte. The reference genome and transcriptomes, combined with previous ecological and environmental data, add to our understanding of mechanisms leading to invasiveness and support the development of novel, genomics‐assisted management approaches for invasivePhragmites.

    more » « less