skip to main content

Search for: All records

Creators/Authors contains: "Kurylyk, Barret L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Groundwater discharge transports dissolved constituents to the ocean, affecting coastal carbon budgets and water quality. However, the magnitude and mechanisms of groundwater exchange along rapidly transitioning Arctic coastlines are largely unknown due to limited observations. Here, using first-of-its-kind coastal Arctic groundwater timeseries data, we evaluate the magnitude and drivers of groundwater discharge to Alaska’s Beaufort Sea coast. Darcy flux calculations reveal temporally variable groundwater fluxes, ranging from −6.5 cm d−1(recharge) to 14.1 cm d−1(discharge), with fluctuations in groundwater discharge or aquifer recharge over diurnal and multiday timescales during the open-water season. The average flux during the monitoring period of 4.9 cm d−1is in line with previous estimates, but the maximum discharge exceeds previous estimates by over an order-of-magnitude. While the diurnal fluctuations are small due to the microtidal conditions, multiday variability is large and drives sustained periods of aquifer recharge and groundwater discharge. Results show that wind-driven lagoon water level changes are the dominant mechanism of fluctuations in land–sea hydraulic head gradients and, in turn, groundwater discharge. Given the microtidal conditions, low topographic relief, and limited rainfall along the Beaufort Sea coast, we identify wind as an important forcing mechanism of coastal groundwater discharge and aquifer recharge with implicationsmore »for nearshore biogeochemistry. This study provides insights into groundwater flux dynamics along this coastline over time and highlights an oft overlooked discharge and circulation mechanism with implications towards refining solute export estimates to coastal Arctic waters.

    « less
  2. Abstract

    Groundwater discharge is an important mechanism through which fresh water and associated solutes are delivered to the ocean. Permafrost environments have traditionally been considered hydrogeologically inactive, yet with accelerated climate change and permafrost thaw, groundwater flow paths are activating and opening subsurface connections to the coastal zone. While warming has the potential to increase land-sea connectivity, sea-level change has the potential to alter land-sea hydraulic gradients and enhance coastal permafrost thaw, resulting in a complex interplay that will govern future groundwater discharge dynamics along Arctic coastlines. Here, we use a recently developed permafrost hydrological model that simulates variable-density groundwater flow and salinity-dependent freeze-thaw to investigate the impacts of sea-level change and land and ocean warming on the magnitude, spatial distribution, and salinity of coastal groundwater discharge. Results project both an increase and decrease in discharge with climate change depending on the rate of warming and sea-level change. Under high warming and low sea-level rise scenarios, results show up to a 58% increase in coastal groundwater discharge by 2100 due to the formation of a supra-permafrost aquifer that enhances freshwater delivery to the coastal zone. With higher rates of sea-level rise, the increase in discharge due to warming is reducedmore »to 21% as sea-level rise decreased land-sea hydraulic gradients. Under lower warming scenarios for which supra-permafrost groundwater flow was not established, discharge decreased by up to 26% between 1980 and 2100 for high sea-level rise scenarios and increased only 8% under low sea-level rise scenarios. Thus, regions with higher warming rates and lower rates of sea-level change (e.g. northern Nunavut, Canada) will experience a greater increase in discharge than regions with lower warming rates and higher rates of sea-level change. The magnitude, location and salinity of discharge have important implications for ecosystem function, water quality, and carbon dynamics in coastal zones.

    « less
  3. Abstract

    Groundwater is critical for maintaining stream baseflow and thermal stability; however, the influence of groundwater on streamflow has been difficult to evaluate at broad spatial scales. Techniques such as baseflow separation necessitate streamflow records and do not directly indicate whether groundwater inflow may be sourced from more dynamic shallow flowpaths. We present a web tool applicationPASTA(Paired Air and Stream Temperature Analysis; that capitalizes on increased public stream temperature data availability and large‐scale, gridded climate observations to provide new and efficient insights regarding relative groundwater influence on streams.PASTAanalyzes paired air and stream water temperature signals to evaluate spatiotemporal patterns in stream thermal sensitivity and relative groundwater influence, including inference regarding the dominant source groundwater depth (shallow or deep (i.e., approximately >6 m depth)). The tool is linked to publicly available stream temperature datasets and accepts user‐uploaded datasets. As local air temperature is not often monitored, PASTA pulls daily air temperature data from the comprehensive Daymet products when directly measured data are unavailable, allowing the repurposing of existing stream temperature data. After data are selected or uploaded, the tool (a) fits sinusoidal curves of daily stream and air temperatures by year (water or calendar) to indicate groundwater influence characteristics and (b)more »performs linear regressions for stream versus air temperatures to indicate stream thermal sensitivity. Results are exported in ASCII file format, creating an efficient and approachable analysis tool for the adoption of newly developed heat tracing analysis from stream reach to landscape scales.

    « less
  4. Abstract

    Low‐elevation coastal areas are increasingly vulnerable to seawater flooding as sea levels rise and the frequency and intensity of large storms increase with climate change. Seawater flooding can lead to the salinization of fresh coastal aquifers by vertical saltwater intrusion (SWI). Vertical SWI is often overlooked in coastal zone threat assessments despite the risk it poses to critical freshwater resources and salt‐intolerant ecosystems that sustain coastal populations. This review synthesizes field and modeling approaches for investigating vertical SWI and the practical and theoretical understanding of salinization and flushing processes obtained from prior studies. The synthesis explores complex vertical SWI dynamics that are influenced by density‐dependent flow and oceanic, hydrologic, geologic, climatic, and anthropogenic forcings acting on coastal aquifers across spatial and temporal scales. Key knowledge gaps, management challenges, and research opportunities are identified to help advance our understanding of the vulnerability of fresh coastal groundwater. Past modeling studies often focus on idealized aquifer systems, and thus future work could consider more diverse geologic, climatic, and topographic environments. Concurrent field and modeling programs should be sustained over time to capture interactions between physical processes, repeated salinization and flushing events, and delayed aquifer responses. Finally, this review highlights the need formore »improved coordination and knowledge translation across disciplines (e.g., coastal engineering, hydrogeology, oceanography, social science) to gain a more holistic understanding of vertical SWI. There also needs to be more education of communities, policy makers, and managers to motivate societal action to address coastal groundwater vulnerability in a changing climate.

    « less
  5. Recent waste rock pile designs have been proposed to incorporate a fine-grained layer to create a capillary barrier to prevent surface water from draining into the pile interior. This study analyses active fibre optic distributed temperature sensing (FO-DTS) as a tool to measure the effectiveness a capillary barrier system following an infiltration test. A laboratory waste rock column was built with anorthosite waste rock overlain by sand. Volumetric water content is calculated during heat cycles lasting 15 min powered at 15 W/m in the column. A new algorithm is employed to circumvent several requirements for soil specific calibration. The inferred moisture contents were verified by soil moisture probes located adjacent to the cable. The FO-DTS data indicate, at vertical resolutions up to 2 cm, that water is retained in the sand and does not drain into the anorthosite following the infiltration test. The coefficient of determination, R 2 , between the inferred and measured volumetric water content in the fine cover sand layer is 0.90, while the screened anorthosite maintained an R 2 of 0.94 with constant moisture content throughout the test. This study will ultimately help guide future waste rock storage design initiatives incorporating fibre optic sensors, leading tomore »improved environmental mine waste management.« less