- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Aarrestad, T K (2)
-
Aarup_Petersen, H (2)
-
Abbaneo, D (2)
-
Abbiendi, G (2)
-
Abbott, S (2)
-
Abbrescia, M (2)
-
Abdullin, S (2)
-
Abreu, A (2)
-
Acharya, S (2)
-
Acosta, D (2)
-
Adam, W (2)
-
Adamidis, K (2)
-
Adams, M R (2)
-
Adams, T (2)
-
Adloff, C (2)
-
Adzic, P (2)
-
Aebi, D (2)
-
Afanasiev, S (2)
-
Agapitos, A (2)
-
Agarwal, G (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A<sc>bstract</sc> A search for dark matter (DM) particles produced in association with bottom quarks is presented. The analysis uses proton-proton collision data at a center-of-mass energy of$$ \sqrt{s} $$ = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. The search is performed in a final state with large missing transverse momentum and a pair of jets originating from bottom quarks. No significant excess of data is observed with respect to the standard model expectation. Results are interpreted in the context of a type-II two-Higgs-doublet model with an additional light pseudoscalar (2HDM+a). An upper limit is set on the mass of the lighter pseudoscalar, probing masses up to 260 GeV at 95% confidence level. Sensitivity to the parameter space with the ratio of the vacuum expectation values of the two Higgs doublets, tanβ, greater than 15 is achieved, capitalizing on the enhancement of couplings between pseudoscalars and bottom quarks with high tanβ.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Hayrapetyan, A; Tumasyan, A; Adam, W; Andrejkovic, J W; Bergauer, T; Chatterjee, S; Damanakis, K; Dragicevic, M; Hussain, P S; Jeitler, M; et al (, Journal of High Energy Physics)A<sc>bstract</sc> A search for long-lived heavy neutrinos (N) in the decays of B mesons produced in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV is presented. The data sample corresponds to an integrated luminosity of 41.6 fb−1collected in 2018 by the CMS experiment at the CERN LHC, using a dedicated data stream that enhances the number of recorded events containing B mesons. The search probes heavy neutrinos with masses in the range 1 <mN< 3 GeV and decay lengths in the range 10−2<cτN< 104mm, where τNis the N proper mean lifetime. Signal events are defined by the signature B →ℓBNX; N →ℓ±π∓, where the leptonsℓBandℓcan be either a muon or an electron, provided that at least one of them is a muon. The hadronic recoil system, X, is treated inclusively and is not reconstructed. No significant excess of events over the standard model background is observed in any of theℓ±π∓invariant mass distributions. Limits at 95% confidence level on the sum of the squares of the mixing amplitudes between heavy and light neutrinos, |VN|2, and oncτNare obtained in different mixing scenarios for both Majorana and Dirac-like N particles. The most stringent upper limit|VN|2< 2.0×10−5is obtained atmN= 1.95 GeV for the Majorana case where N mixes exclusively with muon neutrinos. The limits on|VN|2for masses 1 <mN< 1.7 GeV are the most stringent from a collider experiment to date.more » « less
An official website of the United States government
