Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2025
-
For some intermetallic compounds containing lanthanides, structural transitions can result in intermediate electronic states between trivalency and tetravalency; however, this is rarely observed for praseodymium compounds. The dominant trivalency of praseodymium limits potential discoveries of emergent quantum states in itinerant 4
f 1systems accessible using Pr4+-based compounds. Here, we use in situ powder x-ray diffraction and in situ electron energy-loss spectroscopy (EELS) to identify an intermetallic example of a dominantly Pr4+state in the polymorphic system Pr2Co3Ge5. The structure-valence transition from a nearly full Pr4+electronic state to a typical Pr3+state shows the potential of Pr-based intermetallic compounds to host valence-unstable states and provides an opportunity to discover previously unknown quantum phenomena. In addition, this work emphasizes the need for complementary techniques like EELS when evaluating the magnetic and electronic properties of Pr intermetallic systems to reveal details easily overlooked when relying on bulk magnetic measurements alone.Free, publicly-accessible full text available January 26, 2025 -
Abstract The crystal structure, electron energy-loss spectroscopy (EELS), heat capacity, and anisotropic magnetic and resistivity measurements are reported for Sn flux grown single crystals of orthorhombic Pr2Co3Ge5(U2Co3Si5-type,
Ibam ). Our findings show thato -Pr2Co3Ge5hosts nearly trivalent Pr ions, as evidenced by EELS and fits to temperature dependent magnetic susceptibility measurements. Complex magnetic ordering with a partially spin-polarized state emerges nearT sp= 32 K, with a spin reconfiguration transition nearT M= 15 K. Heat capacity measurements show that the phase transitions appear as broad peaks in the vicinity ofT spandT M. The magnetic entropy further reveals that crystal electric field splitting lifts the Hund’s rule degeneracy at low temperatures. Taken together, these measurements show that Pr2Co3Ge5is an environment for complexf state magnetism with potential strongly correlated electron states.