skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "LaBollita, Harrison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Abstract A key open question in the study of layered superconducting nickelate films is the role that hydrogen incorporation into the lattice plays in the appearance of the superconducting state. Due to the challenges of stabilizing highly crystalline square planar nickelate films, films are prepared by the deposition of a more stable parent compound which is then transformed into the target phaseviaa topotactic reaction with a strongly reducing agent such as CaH2. Recent studies, both experimental and theoretical, have introduced the possibility that the incorporation of hydrogen from the reducing agent into the nickelate lattice may be critical for the superconductivity. In this work, we use secondary ion mass spectrometry to examine superconducting La1−xXxNiO2/ SrTiO3(X= Ca and Sr) and Nd6Ni5O12/ NdGaO3films, along with non-superconducting NdNiO2/ SrTiO3and (Nd,Sr)NiO2/ SrTiO3. We find no evidence for extensive hydrogen incorporation across a broad range of samples, including both superconducting and non-superconducting films. Theoretical calculations indicate that hydrogen incorporation is broadly energetically unfavorable in these systems, supporting our conclusion that extensive hydrogen incorporation is not generally required to achieve a superconducting state in layered square-planar nickelates. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. We report the discovery of a novel form of Ruddlesden–Popper (RP) nickelate that stands as the first example of long-range, coherent polymorphism in this class of inorganic solids. Rather than the well-known, uniform stacking of perovskite blocks ubiquitously found in RP phases, this newly discovered polymorph of the bilayer RP phase La3Ni2O7 adopts a novel stacking sequence in which single-layer and trilayer blocks of NiO6 octahedra alternate in a “1313” sequence. Crystals of this new polymorph are described in space group Cmmm, although we note evidence for a competing Imam variant. Transport measurements at ambient pressure reveal metallic character with evidence of a charge density wave transition with an onset at T ≈ 134 K. The discovery of such polymorphism could reverberate to the expansive range of science and applications that rely on RP materials, particularly the recently reported signatures of superconductivity in bilayer La3Ni2O7 with Tc as high as 80 K above 14 GPa. 
    more » « less
  4. Abstract We provide a set of computational experiments based on ab initio calculations to elucidate whether a cuprate-like antiferromagnetic insulating state can be present in the phase diagram of the low-valence layered nickelate family (R $$_{n+1}$$ n + 1 Ni $$_n$$ n O $$_{2n+2}$$ 2 n + 2 , R= rare-earth, $$n=1-\infty$$ n = 1 - ∞ ) in proximity to half-filling. It is well established that at $$d^9$$ d 9 filling the infinite-layer ( $$n=\infty$$ n = ∞ ) nickelate is metallic, in contrast to cuprates wherein an antiferromagnetic insulator is expected. We show that for the Ruddlesden-Popper (RP) reduced phases of the series (finite n ) an antiferromagnetic insulating ground state can naturally be obtained instead at $$d^9$$ d 9 filling, due to the spacer RO $$_2$$ 2 fluorite slabs present in their structure that block the c -axis dispersion. In the $$n=\infty$$ n = ∞ nickelate, the same type of solution can be derived if the off-plane R-Ni coupling is suppressed. We show how this can be achieved if a structural element that cuts off the c -axis dispersion is introduced (i.e. vacuum in a monolayer of RNiO $$_2$$ 2 , or a blocking layer in multilayers formed by (RNiO $$_2$$ 2 ) $$_1$$ 1 /(RNaO $$_2$$ 2 ) $$_1$$ 1 ). 
    more » « less
  5. Abstract The layered square-planar nickelates, Nd n +1 Ni n O 2 n +2 , are an appealing system to tune the electronic properties of square-planar nickelates via dimensionality; indeed, superconductivity was recently observed in Nd 6 Ni 5 O 12 thin films. Here, we investigate the role of epitaxial strain in the competing requirements for the synthesis of the n  = 3 Ruddlesden-Popper compound, Nd 4 Ni 3 O 10 , and subsequent reduction to the square-planar phase, Nd 4 Ni 3 O 8 . We synthesize our highest quality Nd 4 Ni 3 O 10 films under compressive strain on LaAlO 3 (001), while Nd 4 Ni 3 O 10 on NdGaO 3 (110) exhibits tensile strain-induced rock salt faults but retains bulk-like transport properties. A high density of extended defects forms in Nd 4 Ni 3 O 10 on SrTiO 3 (001). Films reduced on LaAlO 3 become insulating and form compressive strain-induced c -axis canting defects, while Nd 4 Ni 3 O 8 films on NdGaO 3 are metallic. This work provides a pathway to the synthesis of Nd n +1 Ni n O 2 n +2 thin films and sets limits on the ability to strain engineer these compounds via epitaxy. 
    more » « less