skip to main content

Search for: All records

Creators/Authors contains: "LaBollita, Harrison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The layered square-planar nickelates, Nd n +1 Ni n O 2 n +2 , are an appealing system to tune the electronic properties of square-planar nickelates via dimensionality; indeed, superconductivity was recently observed in Nd 6 Ni 5 O 12 thin films. Here, we investigate the role of epitaxial strain in the competing requirements for the synthesis of the n  = 3 Ruddlesden-Popper compound, Nd 4 Ni 3 O 10 , and subsequent reduction to the square-planar phase, Nd 4 Ni 3 O 8 . We synthesize our highest quality Nd 4 Ni 3 O 10 films under compressive strain on LaAlO 3 (001), while Nd 4 Ni 3 O 10 on NdGaO 3 (110) exhibits tensile strain-induced rock salt faults but retains bulk-like transport properties. A high density of extended defects forms in Nd 4 Ni 3 O 10 on SrTiO 3 (001). Films reduced on LaAlO 3 become insulating and form compressive strain-induced c -axis canting defects, while Nd 4 Ni 3 O 8 films on NdGaO 3 are metallic. This work provides a pathway to the synthesis of Nd n +1 Ni n O 2 n +2 thin films and sets limits on the ability to strain engineer these compounds via epitaxy. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Abstract We provide a set of computational experiments based on ab initio calculations to elucidate whether a cuprate-like antiferromagnetic insulating state can be present in the phase diagram of the low-valence layered nickelate family (R $$_{n+1}$$ n + 1 Ni $$_n$$ n O $$_{2n+2}$$ 2 n + 2 , R= rare-earth, $$n=1-\infty$$ n = 1 - ∞ ) in proximity to half-filling. It is well established that at $$d^9$$ d 9 filling the infinite-layer ( $$n=\infty$$ n = ∞ ) nickelate is metallic, in contrast to cuprates wherein an antiferromagnetic insulator is expected. We show that for the Ruddlesden-Popper (RP) reduced phases of the series (finite n ) an antiferromagnetic insulating ground state can naturally be obtained instead at $$d^9$$ d 9 filling, due to the spacer RO $$_2$$ 2 fluorite slabs present in their structure that block the c -axis dispersion. In the $$n=\infty$$ n = ∞ nickelate, the same type of solution can be derived if the off-plane R-Ni coupling is suppressed. We show how this can be achieved if a structural element that cuts off the c -axis dispersion is introduced (i.e. vacuum in a monolayer of RNiO $$_2$$ 2 , or a blocking layer in multilayers formed by (RNiO $$_2$$ 2 ) $$_1$$ 1 /(RNaO $$_2$$ 2 ) $$_1$$ 1 ). 
    more » « less
  4. Free, publicly-accessible full text available April 1, 2024
  5. null (Ed.)