skip to main content

Search for: All records

Creators/Authors contains: "LaDue, Nicole D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given the importance of fresh water, we investigated undergraduate students’ understanding of water flow and its consequences. We probed introductory geology students’ pre-instruction knowledge using a classroom management system at two large research-intensive universities. Open-ended clicker questions, where students click directly on diagrams using their smart device (e.g., cell phone, tablet) to respond, probed students’ predictions about: (1) groundwater movement and (2) velocity and erosion in a river channel. Approximately one-third of students correctly identified groundwater flow as having lateral and vertical components; however, the same number of students identified only vertical components to flow despite the diagram depicting enough topographic gradient for lateral flow. For rivers depicted as having a straight channel, students correctly identified zones of high velocity. However, for curved river channels, students incorrectly identified the inside of the bend as the location of greatest erosion and highest velocity. Systematic errors suggest that students have mental models of water flow that are not consistent with fluid dynamics. The use of students’ open-ended clicks to reveal common errors provided an efficient tool to identify conceptual challenges associated with the complex spatial and temporal processes that govern water movement in the Earth system.
  2. The construct of active learning permeates undergraduate education in science, technology, engineering, and mathematics (STEM), but despite its prevalence, the construct means different things to different people, groups, and STEM domains. To better understand active learning, we constructed this review through an innovative interdisciplinary collaboration involving research teams from psychology and discipline-based education research (DBER). Our collaboration examined active learning from two different perspectives (i.e., psychology and DBER) and surveyed the current landscape of undergraduate STEM instructional practices related to the modes of active learning and traditional lecture. On that basis, we concluded that active learning—which is commonly used to communicate an alternative to lecture and does serve a purpose in higher education classroom practice—is an umbrella term that is not particularly useful in advancing research on learning. To clarify, we synthesized a working definition of active learning that operates within an elaborative framework, which we call the construction-of-understanding ecosystem. A cornerstone of this framework is that undergraduate learners should be active agents during instruction and that the social construction of meaning plays an important role for many learners, above and beyond their individual cognitive construction of knowledge. Our proposed framework offers a coherent and actionable concept of active learningmore »with the aim of advancing future research and practice in undergraduate STEM education.« less