skip to main content

Search for: All records

Creators/Authors contains: "LaGrassa, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Student perceptions of programming can impact their experiences in introductory computer science (CS) courses. For example, some students negatively assess their own ability in response to moments that are natural parts of expert practice, such as using online resources or getting syntax errors. Systems that automatically detect these moments from interaction log data could help us study these moments and intervene when the occur. However, while researchers have analyzed programming log data, few systems detect pre-defined moments, particularly those based on student perceptions. We contribute a new approach and system for detecting programming moments that students perceive as important from interaction log data. We conducted retrospective interviews with 41 CS students in which they identified moments that can prompt negative self-assessments. Then we created a qualitative codebook of the behavioral patterns indicative of each moment, and used this knowledge to build an expert system. We evaluated our system with log data collected from an additional 33 CS students. Our results are promising, with F1 scores ranging from 66% to 98%. We believe that this approach can be applied in many domains to understand and detect student perceptions of learning experiences.
  2. There has been a growing interest in the use of computer-based models of scientific phenomena as part of classroom curricula, especially models that learners create for themselves. However, while studies show that constructing computational models of phenomena can serve as a powerful foundation for learning science, this approach has struggled to gain widespread adoption in classrooms because it not only requires teachers to learn sophisticated technological tools (such as computer programming), but it also requires precious instructional time to introduce these tools to students. Moreover, many core scientific topics such as the kinetic molecular theory, natural selection, and electricity are difficult to model even with novice-friendly environments. To address these limitations, we present a novel design approach called phenomenological programming that builds on students' intuitive understanding of real-world objects, patterns, and events to support the construction of agent-based computational models. We present preliminary case studies and discuss their implications for STEM content learning and the learnability and expressive power of phenomenological programming.