skip to main content


Search for: All records

Creators/Authors contains: "Lacey, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 19, 2024
  2. Abstract

    Self‐sorting is commonly observed in complex reaction systems, which has been utilized to guide the formation of single major by‐design molecules. However, most studies have been focused on non‐covalent systems, and using self‐sorting to achieve covalently bonded architectures is still relatively less explored. Herein, we first demonstrated the dynamic nature of spiroborate linkage and systematically studied the self‐sorting behavior observed in the transformation between spiroborate‐linked well‐defined polymeric and molecular architectures, which is enabled by spiroborate bond exchange. The scrambling between a macrocycle and a 1D helical covalent polymer led to the formation of a molecular cage, whose structures are all unambiguously elucidated by single‐crystal X‐ray diffraction. The results indicate that the molecular cage is the thermodynamically favored product in this multi‐component reaction system. This work represents the first example of a 1D polymeric architecture transforming into a shape‐persistent molecular cage, driven by dynamic covalent self‐sorting. This study will further guide the design of spiroborate‐based materials and open the possibilities for the development of novel complex yet responsive dynamic covalent molecular or polymeric systems.

     
    more » « less
  3. Abstract

    Self‐sorting is commonly observed in complex reaction systems, which has been utilized to guide the formation of single major by‐design molecules. However, most studies have been focused on non‐covalent systems, and using self‐sorting to achieve covalently bonded architectures is still relatively less explored. Herein, we first demonstrated the dynamic nature of spiroborate linkage and systematically studied the self‐sorting behavior observed in the transformation between spiroborate‐linked well‐defined polymeric and molecular architectures, which is enabled by spiroborate bond exchange. The scrambling between a macrocycle and a 1D helical covalent polymer led to the formation of a molecular cage, whose structures are all unambiguously elucidated by single‐crystal X‐ray diffraction. The results indicate that the molecular cage is the thermodynamically favored product in this multi‐component reaction system. This work represents the first example of a 1D polymeric architecture transforming into a shape‐persistent molecular cage, driven by dynamic covalent self‐sorting. This study will further guide the design of spiroborate‐based materials and open the possibilities for the development of novel complex yet responsive dynamic covalent molecular or polymeric systems.

     
    more » « less
  4. null (Ed.)
    Two additions impacting tables 3 and 4 in ref. [1] are presented in the following. No significant impact is found for other results or figures in ref. [1]. 
    more » « less