- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Christou, George (1)
-
Ioannidis, Sotiris (1)
-
Kemerlis, Vasileios P. (1)
-
Lahtinen, Eric (1)
-
Ntousakis, Grigoris (1)
-
Vasilakis, Nikos (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Modern applications, written in high-level programming languages, enjoy the security benefits of memory and type safety. Unfortunately, even a single memory-unsafe library can wreak havoc on the rest of an otherwise safe application, nullifying all the security guarantees offered by the high-level language and its managed runtime. We perform a study across the Node.js ecosystem to understand the use patterns of binary add-ons. Taking the identified trends into account, we propose a new hybrid permission model aimed at protecting both a binary add-on and its language-specific wrapper. The permission model is applied all around a native add-on and is enforced through a hybrid language-binary scheme that interposes on accesses to sensitive resources from all parts of the native library. We infer the add-on’s permission set automatically over both its binary and JavaScript sides, via a set of novel program analyses. Applied to a wide variety of native add-ons, we show that our framework, BinWrap, reduces access to sensitive resources, defends against real-world exploits, and imposes an overhead that ranges between 0.71%–10.4%.more » « less
An official website of the United States government
