- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Andreyev, Andrei (1)
-
Angus, Cameron (1)
-
Bhattacharjee, Soumendu (1)
-
Buck, Samantha (1)
-
Chakraborty, Soham (1)
-
Davids, Barry (1)
-
Diget, Christian (1)
-
Fernandez, Asunción (1)
-
Garnsworthy, Adam (1)
-
Griffin, Chris (1)
-
Hackman, Greg (1)
-
Higgins, Erin R (1)
-
Hirschi, Raphael (1)
-
Hudson, Kevan (1)
-
Hufschmidt, Dirk (1)
-
Karayonchev, Vasil (1)
-
Kim, Yong (1)
-
Laird, Alison (1)
-
Laird, Alison M (1)
-
Lennarz, Annika (1)
-
- Filter by Editor
-
-
Freeman, S. (1)
-
Lederer-Woods, C. (1)
-
Manna, A. (1)
-
Mengoni, A. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The chemical feedback from stellar winds in low metallicity (Z) environments is key to understanding the evolution of globular clusters and the early Universe. With a disproportionate amount of mass lost from the most massive stars (M > 100 M⊙) and an excess of such stars expected at the lowest metallicities, their contribution to the enrichment of the early pristine clusters could be significant. In this work, we examine the effect of mass loss at low metallicity on the nucleosynthesis and wind yields of (very) massive stars. We calculated stellar models with initial masses ranging from 30 to 500 M⊙during core hydrogen and helium burning phases at four metallicities ranging from 20% Z⊙down to 1% Z⊙. We provide the ejected masses and net yields for each grid of models. While mass-loss rates decrease withZ, we find that not only are wind yields significant, but the nucleosynthesis is also altered due to the change in central temperatures, and therefore it also plays a role. We find that 80–300 M⊙models can produce large quantities of Na-rich and O-poor material, which is relevant for the observed Na-O anti-correlation in globular clusters.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Angus, Cameron; Williams, Matthew; Andreyev, Andrei; Bhattacharjee, Soumendu; Buck, Samantha; Chakraborty, Soham; Davids, Barry; Diget, Christian; Garnsworthy, Adam; Griffin, Chris; et al (, EPJ Web of Conferences)Freeman, S.; Lederer-Woods, C.; Manna, A.; Mengoni, A. (Ed.)The r-process has been shown to be robust in reproducing the abundance distributions of heavy elements, such as europium, seen in ultra-metal poor stars. In contrast, observations of elements 26 < Z < 47 display overabundances relative to r-process model predictions. A proposed additional source of early nucleosynthesis is the weak r-process in neutrino-driven winds of core-collapse supernovae. It has been shown that in this site ( α ,n) reactions are both crucial to nucleosynthesis and the main source of uncertainty in model-based abundance predictions. Aiming to improve the certainty of nucleosynthesis predictions, the cross section of the important reaction 86 Kr( α ,n) 89 Sr has been measured at an energy relevant to the weak r-process. This experiment was conducted in inverse kinematics at TRIUMF with the EMMA recoil mass spectrometer and the TIGRESS gamma-ray spectrometer. A novel type of solid helium target was used.more » « less
An official website of the United States government
