skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Laird, Brian B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 9, 2025
  2. Amorphous silica (a-SiO2) surfaces, when grafted with select metals on the active sites of the functionalized surfaces, can act as useful heterogeneous catalysts. From a molecular modeling perspective, one challenge has been generating a-SiO2 slab models with controllable surface roughness to facilitate the study of the effect of surface morphology on the material properties. Previous computational methods either generate relatively flat surfaces or periodically corrugated surfaces that do not mimic the full range of potential surface roughness of the amorphous silica material. In this work, we present a new method, inspired by the capillary fluctuation theory of interfaces, in which rough silica slabs are generated by cleaving a bulk amorphous sample using a cleaving plane with Fourier components randomly generated from a Gaussian distribution. The width of this Gaussian distribution (and thus the degree of surface roughness) can be tuned by varying the surface roughness parameter α. Using the van Beest, Kramer, and van Santen (BKS) force field, we create a large number of silica slabs using cleaving surfaces of varying roughness (α) and using two different system sizes. These surfaces are then characterized to determine their roughness (mean- squared displacement), density profile, and ring size distribution. This analysis shows a higher concentration of surface defects (under-/overcoordinated atoms and strained rings) as the surface roughness increases. To examine the effect of the roughness on surface reactivity, we re-equilibriate a subset of these slabs using the reactive force field ReaxFF and then expose the slabs to water and observe the formation of surface silanols. We observe that the rougher surfaces exhibit greater silanol concentrations as well as bimodal acidity. 
    more » « less
  3. To explore the curvature dependence of solid–fluid interfacial thermodynamics, we calculate, using Grand Canonical Monte Carlo simulation, the surface free energy for a 2d hard-disk fluid confined in a circular hard container of radius R as a function of the bulk packing fraction η and wall curvature C̄=−1/R. (The curvature is negative because the surface is concave.) Combining this with our previous data [Martin et al., J. Phys. Chem. B 124, 7938–7947 (2020)] for the positive curvature case (a hard-disk fluid at a circular wall, C̄=+1/R), we obtain a complete picture of surface thermodynamics in this system over the full range of positive and negative wall curvatures. Our results show that γ is linear in C̄ with a slope that is the same for both positive and negative wall curvatures, with deviations seen only at high negative curvatures (strong confinement) and high density. This observation indicates that the surface thermodynamics of this system is consistent with the predictions of so-called morphometric thermodynamics at both positive and negative curvatures. In addition, we show that classical density functional theory and a generalized scaled particle theory can be constructed that give excellent agreement with the simulation data over most of the range of curvatures and densities. For extremely high curvatures, where only one or two disks can occupy the container at maximum packing, it is possible to calculate γ exactly. In this limit, the simulations and density functional theory calculations are in remarkable agreement with the exact results. 
    more » « less