skip to main content


Search for: All records

Creators/Authors contains: "Lale, Sahin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning a dynamical system requires stabilizing the unknown dynamics to avoid state blow-ups. However, the standard reinforcement learning (RL) methods lack formal stabilization guarantees, which limits their applicability for the control of real-world dynamical systems. We propose a novel policy optimization method that adopts Krasovskii's family of Lyapunov functions as a stability constraint. We show that solving this stability-constrained optimization problem using a primal-dual approach recovers a stabilizing policy for the underlying system even under modeling error. Combining this method with model learning, we propose a model-based RL framework with formal stability guarantees, Krasovskii-Constrained Reinforcement Learning (KCRL). We theoretically study KCRL with kernel-based feature representation in model learning and provide a sample complexity guarantee to learn a stabilizing controller for the underlying system. Further, we empirically demonstrate the effectiveness of KCRL in learning stabilizing policies in online voltage control of a distributed power system. We show that KCRL stabilizes the system under various real-world solar and electricity demand profiles, whereas standard RL methods often fail to stabilize. 
    more » « less