Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Internet traffic load is not uniformly distributed through the day; it is significantly higher during peak-periods, and comparatively idle during off-peak periods. In this context, we present CacheFlix, a time-shifted edge-caching solution that prefetches Netflix content during off-peak periods of network connectivity. We specifically focus on Netflix since it contributes to the largest percentage of global Internet traffic by a single application. We analyze a real-world dataset of Netflix viewing activity that we collected from 1060 users spanning a 1-year period and comprised of over 2.2 million Netflix TV shows and documentary series; we restrict the scope of our study to Netflix series that account for 65% of a typical user's Netflix load in terms of bytes fetched. We present insights on users' viewing behavior, and develop an accurate and efficient prediction algorithm using LSTM networks that caches episodes of Netflix series on storage constrained edge nodes, based on the user's past viewing activity. We evaluate CacheFlix on the collected dataset over various cache eviction policies, and find that CacheFlix is able to shift 70% of Netflix series traffic to off-peak hours.more » « less
-
Netflix is the most popular video streaming site contributing to nearly a quarter of global video traffic. Given the dominance of Netflix on Internet traffic, understanding how individual users consume content on Netflix is of interest to not only the research community, but to network operators, content creators and providers, users and advertisers. In this context, we collect Netflix viewing activity from 1060 users spanning a 1 year period, and consisting of over 1.7 million episodes and movies. We group the users based on their activity level, and provide key insights pertaining to the user’s watch patterns, watch-session length, user preferences, predictability and watch-behavior continuation tendencies. We also implement and evaluate classifiers which are used to predict the user’s engagement in a series based on their past behavioral patterns.more » « less
-
YouTube is the most popular video sharing platform with more than 2 billion active users and 1 billion hours of video content watched daily. The dominance of YouTube has had a big impact on the performance of Internet protocols, algorithms, and systems. Understanding the interaction of users with YouTube is thus of much interest to the research community. In this context, we collect YouTube watch history data from 243 users spanning a 1.5 year period. The dataset comprises of a total of 1.8 million videos. We use the dataset to analyze and present key insights about user-level usage behavior. We also show that our analysis can be used by researchers to tackle a myriad of problems in the general domains of networking and communication. We present baseline characteristics and also substantiated directions to solve a few representative problems related to local caching techniques, prefetching strategies, the performance of YouTube's recommendation engine, the variability of user's video preferences and application specific load provisioning.more » « less
-
The load on wireless cellular networks is not uniformly distributed through the day, and is significantly higher during peak periods. In this context, we present MANTIS, a time-shifted prefetching solution that prefetches content during off-peak periods of network connectivity. We specifically focus on YouTube given that it represents a significant portion of overall wireless data-usage. We make the following contributions: first, we collect and analyze a real-life dataset of YouTube watch history from 206 users comprised of over 1.8 million videos spanning over a 1-year period and present insights on a typical user's viewing behavior; second, we develop an accurate prediction algorithm using a K-nearest neighbor classifier approach; third, we evaluate the prefetching algorithm on two different datasets and show that MANTIS is able to reduce the traffic during peak periods by 34%; and finally, we develop a proof-of-concept prototype for MANTIS and perform a user study.more » « less
An official website of the United States government
