skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lamb, James_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Though the time-domain millimeter sky is yet to be well characterized, the scarcity of millimeter observing resources in the world at present hampers progress toward it. In efforts to bolster the exploration of millimeter transients, we present the Stokes Polarization Radio Interferometer for Time-Domain Experiments (SPRITEly). Located at the Owens Valley Radio Observatory, SPRITEly is currently deployed as a two-element short-baseline 90 GHz interferometer uniquely focused on monitoring bright variable millimeter-continuum sources. We leverage two existing 10.4 m antennas and their existing receiver systems to begin, but we make significant upgrades to the back-end system during the commissioning process. With the ability to achieve rms noise of a few mJy, we plan to monitor known variable sources along with new nearby transients detected from optical surveys at high cadence, with the goal of producing well-sampled light curves. Interpreting these data in conjunction with multiwavelength observations stands to provide insight into the physical properties of the sources that produce transient millimeter emission. We present commissioning and early-science observations that demonstrate the performance of the instrument, including observations of the flaring BL Lac object S2 0109+22 and a periastron passage of the binary T Tauri system DQ Tau. 
    more » « less
  2. Abstract Fast radio bursts (FRBs) are a powerful and mysterious new class of transients that are luminous enough to be detected at cosmological distances. By associating FRBs to host galaxies, we can measure intrinsic and environmental properties that test FRB origin models, in addition to using them as precise probes of distant cosmic gas. The Deep Synoptic Array (DSA-110) is a radio interferometer built to maximize the rate at which it can simultaneously detect and localize FRBs. Here, we present the first sample of FRBs and host galaxies discovered by the DSA-110. This sample of 11 FRBs is the largest, most uniform sample of localized FRBs to date, as it is selected based on association with host galaxies identified in optical imaging by Pan-STARRS1. These FRBs have not been observed to repeat, and their radio properties (dispersion, temporal scattering, energy) are similar to that of the known nonrepeating FRB population. Most host galaxies have ongoing star formation, as has been identified before for FRB hosts. Two hosts of the new sample are massive, quiescent galaxies. The distribution of star formation history across this host-galaxy sample shows that the delay time distribution is wide, with a power-law model that spans from ∼100 Myr to ≳2 Gyr. This requires the existence of one or more progenitor formation channels associated with old stellar populations, such as the binary evolution of compact objects. 
    more » « less