Rockfall and rock avalanches are common in steep terrain on Earth and potentially on other planetary bodies such as the Moon and Mars. Since impacting rocks can damage exposed bedrock as they roll and bounce downhill, rockfall might be an important erosive agent in steep landscapes, even in the absence of water. We developed a new theory for rockfall‐driven bedrock abrasion using the ballistic trajectories of rocks transported under gravity. We calibrated this theory using laboratory experiments of rockfall over an inclined bedrock simulant. Both the experiments and the model demonstrate that bedrock hillslopes can be abraded by dry rockfall, even at gradients below the angle of repose, depending on the bedrock roughness. Feedback between abrasion and topographic steering of rockfall can produce channel‐like forms, such as bedrock chutes, in the absence of water. Particle size has a dominant influence on abrasion rates and runout distances, while the hillslope angle has a comparatively minor influence. Rockfall transport is sensitive to bedrock roughness; terrain with high friction angles can trap rocks creating patches of rock cover that affect subsequent rockfall pathways. Our results suggest that dry rockfall can play an important role in eroding and channelizing steep, rocky terrain on Earth and other planets, such as crater degradation on the Moon and Mars.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Catastrophic drainage of glacial Lake Missoula through the Columbia River Gorge, USA, produced some of the largest floods ever known. However, erosion of the gorge during flooding has not been quantified, hindering discharge reconstructions and our understanding of landscape change by megafloods. Using a neural network and geomorphic observations, we reconstructed the gorge topography and found ∼7.4 km3of rock was eroded from gorge walls. Accounting for a narrower canyon and matching flood high‐water marks resulted in peak‐flood discharge reconstructions of 6 × 106–7 × 106 m3 s−1, which are 30%–40% lower than prior estimates based on the present‐day topography. Sediment transport modeling indicated that more frequent intermediate‐sized floods transported most of the eroded rock. Thus, similar to alluvial rivers, discharge magnitude‐frequency tradeoffs may also govern canyon formation by repeated megafloods.
-
Abstract Lowland deltas experience natural diversions in river course known as avulsions. River avulsions pose catastrophic flood hazards and redistribute sediment that is vital for sustaining land in the face of sea‐level rise. Avulsions also affect deltaic stratigraphic architecture and the preservation of sea‐level cycles in the sedimentary record. Here, we present results from an experimental lowland delta with persistent backwater effects and systematic changes in the rates of sea‐level rise and fall. River avulsions repeatedly occurred where and when the river aggraded to a height of nearly half the channel depth, giving rise to a preferential avulsion node within the backwater zone regardless of sea‐level change. As sea‐level rise accelerated, the river responded by avulsing more frequently until reaching a maximum frequency limited by the upstream sediment supply. Experimental results support recent models, field observations, and experiments, and suggest anthropogenic sea‐level rise will introduce more frequent avulsion hazards farther inland than observed in recent history. The experiment also demonstrated that avulsions can occur during sea‐level fall—even within the confines of an incised valley—provided the offshore basin is shallow enough to allow the shoreline to prograde and the river to aggrade. Avulsions create erosional surfaces within stratigraphy that bound beds reflecting the amount of deposition between avulsions. Avulsion‐induced scours overprint erosional surfaces from sea‐level fall, except when the cumulative drop in sea‐level is greater than the channel depth and less than the basin depth. Results imply sea‐level signals outside this range are removed or distorted in delta deposits.
-
Abstract Coastal rivers that build deltas undergo repeated avulsion events—that is, abrupt changes in river course—which we need to understand to predict land building and flood hazards in coastal landscapes. Climate change can impact water discharge, flood frequency, sediment supply, and sea level, all of which could impact avulsion location and frequency. Here we present results from quasi‐2D morphodynamic simulations of repeated delta‐lobe construction and avulsion to explore how avulsion location and frequency are affected by changes in relative sea level, sediment supply, and flood regime. Model results indicate that relative sea‐level rise drives more frequent avulsions that occur at a distance from the shoreline set by backwater hydrodynamics. Reducing the sediment supply relative to transport capacity has little impact on deltaic avulsions, because, despite incision in the upstream trunk channel, deltas can still aggrade as a result of progradation. However, increasing the sediment supply relative to transport capacity can shift avulsions upstream of the backwater zone because aggradation in the trunk channel outpaces progradation‐induced delta aggradation. Increasing frequency of overbank floods causes less frequent avulsions because floods scour the riverbed within the backwater zone, slowing net aggradation rates. Results provide a framework to assess upstream and downstream controls on avulsion patterns over glacial‐interglacial cycles, and the impact of land use and anthropogenic climate change on deltas.
-
Abstract Aeolis Mons (informally, Mount Sharp) exhibits a number of canyons, including Gediz and Sakarya Valles. Poorly sorted debris deposits are evident on both canyon floors and connect with debris extending down the walls for canyon segments that cut through sulphate‐bearing strata. On the floor of Gediz Vallis, debris overfills a central channel and merges with a massive debris ridge located at the canyon terminus. One wall‐based debris ridge is evident. In comparison, the floor of Sakarya Vallis exhibits a complex array of debris deposits. Debris deposits on wall segments within Sakarya Vallis are mainly contained within chutes that extend downhill from scarps. Lateral debris ridges are also evident on chute margins. We interpret the debris deposits in the two canyons to be a consequence of one or more late‐stage hydrogeomorphic events that increased the probability of landslides, assembled and channelized debris on the canyon floors, and moved materials down‐canyon. The highly soluble nature of the sulphate‐bearing rocks likely contributed to enhanced debris generation by concurrent aqueous weathering to produce blocky regolith for transport downslope by fluvial activity and landslides, including some landslides that became debris flows. Subsequent wind erosion in Gediz Vallis removed most of the debris deposits within that canyon and partially eroded the deposits within Sakarya Vallis. The enhanced wind erosion within Gediz Vallis was a consequence of the canyon's alignment with prevailing slope winds.