- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Banerjee, Ayan (1)
-
Gupta, Sandeep KS (1)
-
Lamrani, Imane (1)
-
Maity, Aranyak (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The paper presents AIIM, an Artificial Intelligence (AI) enabled personalIzation Management software for human-in-the-loop, human-in-the-plant Learning enabled systems (LES). AIIM can be integrated with LES software to aid a human user to achieve safe and effective operation under dynamically changing contexts. AIIM consists of: A) an AI technique to derive model coefficient of a physics guided surrogate model from operational data shared following privacy norms, and b) continuous model conformance to identify key changes in LES operational behavior that may jeopardize safety. We demonstrate two capabilities of AIIM, personalization and unknown error detection, through case studies that span a significant breadth of dynamic context change scenarios including: a) involuntary change in user context such as medication induced glucose metabolism change in automated insulin delivery (AID), b) actuation failure such as cartridge blockage in AID, c) latent sensor error in aviation, and d) unknown coding error in autonomous car software patches. We compare AIIM personalization with human-in-the-loop and self-adaptive model-predictive control design on real-life and simulation settings, to show safe and improved diabetes management.more » « lessFree, publicly-accessible full text available May 23, 2026
An official website of the United States government
