skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lan, Guangchen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 13, 2025
  2. In the rapidly evolving landscape of 5G technology, safeguarding Radio Frequency (RF) environments against sophisticated intrusions is paramount, especially in dynamic spectrum access and management. This paper presents an enhanced experimental model that integrates a self-attention mechanism with a Recurrent Neural Network (RNN)-based autoencoder for the detection of anomalous spectral activities in 5G networks at the waveform level. Our approach, grounded in time-series analysis, processes in-phase and quadrature (I/Q) samples to identify irregularities that could indicate potential jamming attacks. The model's architecture, augmented with a self-attention layer, extends the capabilities of RNN autoen-coders, enabling a more nuanced understanding of temporal dependencies and contextual relationships within the RF spectrum. Utilizing a simulated 5G Radio Access Network (RAN) test-bed constructed with srsRAN 5G and Software Defined Radios (SDRs), we generated a comprehensive stream of data that reflects real-world RF spectrum conditions and attack scenarios. The model is trained to reconstruct standard signal behavior, establishing a normative baseline against which deviations, indicative of security threats, are identified. The proposed architecture is designed to balance between detection precision and computational efficiency, so the LSTM network, enriched with self-attention, continues to optimize for minimal execution latency and power consumption. Conducted on a real-world SDR-based testbed, our results demonstrate the model's improved performance and accuracy in threat detection. 
    more » « less
    Free, publicly-accessible full text available December 13, 2025
  3. Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)
    Federated reinforcement learning (FedRL) enables agents to collaboratively train a global policy without sharing their individual data. However, high communication overhead remains a critical bottleneck, particularly for natural policy gradient (NPG) methods, which are second-order. To address this issue, we propose the FedNPG-ADMM framework, which leverages the alternating direction method of multipliers (ADMM) to approximate global NPG directions efficiently. We theoretically demonstrate that using ADMM-based gradient updates reduces communication complexity from $O(d^2)$ to $O(d)$ at each iteration, where $$d$$ is the number of model parameters. Furthermore, we show that achieving an $$\epsilon$$-error stationary convergence requires $$O(\frac{1}{(1-\gamma)^2-\epsilon})$$ iterations for discount factor $$\gamma$$, demonstrating that FedNPG-ADMM maintains the same convergence rate as standard FedNPG. Through evaluation of the proposed algorithms in MuJoCo environments, we demonstrate that FedNPG-ADMM maintains the reward performance of standard FedNPG, and that its convergence rate improves when the number of federated agents increases. 
    more » « less